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Abstract
Localization is a central problem for intelligent vehicles. Visual localization can

supplement or replace GPS-based localization approaches in situations where GPS
is unavailable or inaccurate. CMUs GPS-denied visual localization algorithm [2] is
one of the popular visual localization algorithm known, and has been extensively an-
alyzed for seasonal variations and environmental conditions. However, the analysis
from design and system perspective such as “where should the camera be placed?”,
“how should it be oriented?”, “what should be the quality of image?” etc. were re-
quired to ensure the commercial deployment of this algorithm. These factors can have
substantial effect on the cost and robustness of a fielded intelligent vehicle. In this
work, we summarize the results of our analysis of this algorithm so as to cover these
issues.
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1 Introduction
Localization is a central problem in robotics – a problem that must be addressed in
many intelligent vehicle applications. For example, visual SLAM algorithms (e.g., [3,
4, 7]) use localization to dynamically build up a map and detect loop closures, while
commercial automotive navigation systems and visual localization algorithms (e.g.,
CMUs GPS-denied visual localization algorithm [2]) determine a vehicle’s position
with respect to a prior map.

While localization can often be accomplished using GPS, an autonomous vehicle
must be robust to situations where GPS is unavailable, such as when driving downtown
in large cities or along forested, rural roads. Furthermore, localized GPS jamming is
becoming increasingly common. As a consequence, fielded autonomous vehicles will
likely need to incorporate alternative sensing modalities for localization. Appearance-
based (i.e., visual) localization is one promising candidate.

CMUs GPS-denied visual localization algorithm [2] is one of the popular visual
localization algorithm known, and has been extensively analyzed for seasonal varia-
tions and environmental conditions. However, it required analysis from design and
system perspective so as to efficiently deploy it to commercial systems. The goal of
this work is to gain an understanding of how different sensor configuration parame-
ters and environmental conditions affect this algorithm. We conducted experiments
using the Navlab experimental testbed vehicle, which we outfitted with a Ladybug 5
omnidirectional camera for the purpose of these experiments. We defined a test route
consisting of sequences of different environment types, and we collected data under
varying environmental conditions and with different system configurations. We then
evaluated the performance of our algorithm in terms of accuracy, failure rate, and com-
putational requirements. The results of our analysis indicate that the algorithm reliably
localizes the vehicle across a variety of environmental conditions and system configu-
rations, with an accuracy of 1 to 2 meters on average. The best configuration aims the
camera at an angle of about 67.5◦ with respect to the front of the vehicle (or alterna-
tively, masks out regions in the front of the vehicle if the camera is pointing forward).
We also found that the algorithm degrades gracefully with lower map resolutions and
that it performs well even with image resolutions as low as 24x24 pixels.

2 Hardware Setup
Our data collection testbed is based on the Navlab 11 autonomous vehicle (Figure 1(a)).
Among other things, the vehicle is equipped with an IMU, GPS, and a computing
infrastructure that enables real-time data synchronization and logging. We augmented
the baseline platform with a Point Grey Ladybug 5 panoramic camera mounted above
the hood (Figure 1(b)). The camera captures six 2448 x 2048 images at 10 fps. The
images can be stitched together into a panorama that covers 90% of the viewing sphere.

The benefit of the panoramic camera is that it enables the comparison of different
viewing directions and fields of view for the exact same data sequence. Virtual video
streams are extracted from the panoramic video by cropping different sections of the
stitched spherical panorama and rectifying the image following a pinhole model. One
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(a) (b)

Figure 1: (a) The Navlab 11 data collection testbed used in this study. (b) A close-up
of the mounting of the Ladybug 5 panoramic camera.

downside to this virtual camera approach is that the position of the virtual camera
is limited to the position of the actual camera, so, for example, it is not possible to
generate an image for a virtual camera mounted on the front bumper.

After data collection was complete, we discovered a problem with the synchroniza-
tion between the computer controlling the Ladybug 5 camera and the computer con-
trolling the GPS/IMU. As a result, the synchronization between imagery and vehicle
ground truth position was not correct. We corrected the problem by resynchronizing
the data using manually determined correspondences between the two data streams.
Specifically, we identified points where the vehicle came to a stop or began moving,
both of which can be readily identified in each data stream, and then applied a linear
correction to the timestamps on the imagery.

The synchronization problem was later diagnosed as a deficiency in the Network
Time Protocol client on the Windows operating system. The problem has since been
corrected, but it was not practical to retake all the data for this analysis. The result
of the problem is that our analysis is likely overestimating the error in positioning.
We do not feel that this is a significant problem, since the localization accuracy levels
we achieved, even with this additional error, were good. Furthermore, there are other
sources of error of the same magnitude, which we cannot control (e.g., GPS drift).

3 Experimental Plan

We identified four different configuration parameters and two environmental conditions
that we considered likely to affect the algorithms performance. For each parameter or
condition, we identified a set of values to be tested. The full list of parameters and
conditions, along with the values tested, is shown in Table 1.

Based on the target conditions and parameters, we established a test route in the
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Figure 2: An example panoramic image obtained by the Ladybug 5.

Table 1: Configuration and environmental parameters and their values

Parameter Values
Camera orientation 0◦, 22.5◦, 45◦, 67.5◦, 90◦

Field of view 45◦, 60◦, 75◦, 90◦

Image resolution 24x24, 48x48, 96x96, 192x192, 384x384 pixels
Map resolution 0.25, 0.5, 1, 2, 3, 6, 10, 20, 30 meters
Environment setting rural, commercial, residential
Time of day noon, afternoon, evening, partly cloudy, cloudy

vicinity of CMU, which would fully exercise these conditions. In particular, we de-
vised the route so that it contained extended contiguous regions of a given environment
type. The chosen route consists of an initial rural/park-like section, followed by a com-
mercial section, and concluded by a residential section. The total route length is 16 km
and takes approximately 35 minutes to drive. The route map is shown in Figure 3.

We traversed the test route multiple times in the same day to obtain the time of day
variations, and on separate days, as weather permitted, to obtain the sunlight variations.
Table 2 summarizes the data collection trials used for this analysis.

4 Analysis of Configuration Parameters
We divide our analysis into factors that can be controlled by the developer and those
that are outside of the developers control. In this section, we analyze the design choices
related to sensor configuration: region selection, orientation, field of view, image res-
olution, and image rate. In each experiment, all of the parameters/conditions are set
to their baseline values (as shown in Table 1), and only the parameter/condition being
tested is varied.
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Figure 3: The test route contains sections of rural/park (marker A to B), urban (B to
C), and neighborhood (C to A) environments.

Table 2: Dataset description

Dataset Morning Partly Cloudy Afternoon Evening Noon Cloudy Day
Route length (Km) 16.2 16.4 16.3 16.3 12.3 12.4

Date (in 2013) Oct 8 Oct 8 Oct 8 Oct 8 Oct 9 Nov 7
Time of day 9:54 – 12:44 – 15:21 – 18:08 – 12:07 – 14:46 –

10:28 13:21 16:04 18:47 12:39 15:14

4.1 Region Selection

We conducted an initial experiment on region selection using the data from VW last
summer. In that experiment, we found that using a forward-facing camera, masking out
the sky, road and vehicle hood improved localization performance. Based on these re-
sults, we reformulated the region selection problem in an information theoretic frame-
work.

Consider an image taken from a forward-looking camera on a vehicle. A typical
scene contains regions of road, sky, and traffic ahead, and buildings, trees, parked cars,
and signs on the sides. Intuitively, unique landmarks, such as particular buildings, are
more informative for determining location than generic objects (e.g., trees, road, and
sky) or moving objects (e.g., traffic). Therefore, we hypothesize that a good sensor
configuration for localization will focus the sensing on the sides of the road. However,
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Figure 4: Examples of different environment types: rural/park (a-b), commercial (c-d),
and residential (e-f).

    

(a) (b)

Figure 5: (a) The heat map showing the most informative regions of the view (b) Over-
laying the mask onto the original image and thresholding low values shows that the
informative regions lie on the sides of the road.
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Figure 6: Region selection using camera orientation = 45◦ and FOV = 90◦.

side-facing sensors could actually perform worse due to mitigating factors, such as
motion blur and the limited time that objects are within the sensors field of view.

We can use information theory to formalize and mathematically quantify how unique
or interesting an image region is. It is well-known from information theory that entropy
is a measure of the amount of information in a distribution. Here, we compute the en-
tropy of each pixel location over all the images from an entire route.

H = −
∑
i

pilog(pi),

where pi is the probability distribution of grey-scale intensity values at each pixel
location. The resulting entropy-based heat map normalized to [0,1] in Figure 5 shows
graphically that the left and right sides of the road have higher entropy, and therefore
contain more information, than the other regions, such as the hood, sky, and the road
itself. Similar patterns were observed in other data sets that used different camera
configuration settings.

We tested the performance of region selection using virtual cameras with 45◦ ori-
entation from front-facing, and 90◦ FOV. Using manually selected regions (Figure 6)
to discard the sky and road results in a reduction of localization error in every test case
(Figure 7 and Table 3). The benefit of region selection is less in this case, probably due
to the fact that the camera orientation already eliminates significantly more of the un-
informative region than the forward-looking camera in the previous analysis using VW
data. We also analyzed the number of divergences, which we define as instances during
which the vehicles position estimate exceeds 10 m. Using region selection reduces the
number of divergences to zero in every test case.

4.2 Camera Orientation
In this section, we analyze the effect of camera pointing direction on performance. We
used images extracted from the panoramic camera image, varying the virtual camera
orientation from 0◦ (front-facing) to 90◦ in increments of 22.5◦ while keeping the
FOV constant at 90◦. The results, shown in Figure 8 and Table ??, show that accuracy
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Figure 7: Result of using region selection shown in Figure 6 using the database from
the morning trial.

Table 3: Region selection. Eliminating non-informative regions reduces localization
error and divergences.

Avg Error (#Div)
Time of Day Baseline Region Selection

Noon 2.67 (0) 2.59 (0)
Afternoon 1.25 (1) 1.18 (0)
Evening 2.00 (2) 1.84 (0)

Partly Cloudy 2.16 (2) 2.06 (0)
Cloudy 3.20 (2) 2.89 (0)
Mean 2.26 (1.4) 2.11 (0)

improves steadily with increasing orientation toward the side, but the improvement
between 67.5◦ and 90◦ is minimal. Looking at the original images, these last two
orientations contain minimal amount of low-information regions (i.e., road and sky).
These orientations also result in the fewest divergences.

4.3 Field of View
Field of view (FOV) can potentially affect localization performance. Increasing the
FOV observes a wider area and potentially more distinctive locations. However, for
a given image resolution, a wider FOV reduces the detail at the pixel level. It is not
obvious which factor is more influential. An additional question is whether the best
FOV choice is the same for different camera orientations.

To test these ideas, we conducted an experiment similar to the one for camera
orientation. Using the panoramic camera, we extracted sub-images with FOV values
ranging from 45◦ to 90◦ in 15◦ increments. We used the same data sets as in the
orientation experiment and, in fact, tested all combinations of orientation with each
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Figure 8: The effect of camera orientation on localization accuracy.

Camera Parameters Time of Day
Orientation FOV Noon Afternoon Evening Partly Cloudy Cloudy Mean

0 90 3.36 (2) 2.51 (1) 2.10 (4) 2.78 (4) 3.29 (3) 2.81 (2.8)
22.5 90 2.94 (0) 1.67 (1) 2.03 (2) 2.43 (2) 3.20 (1) 2.46 (1.2)
45 45 2.58 (0) 1.22 (0) 1.85 (0) 2.06 (0) 2.89 (0) 2.12 (0)
45 60 3.19 (1) 1.21 (0) 1.86 (0) 2.10 (0) 2.88 (0) 2.25 (0.2)
45 75 2.66 (0) 1.20 (1) 1.95 (4) 2.10 (0) 3.10 (2) 2.20 (1.6)
45 90 2.67 (0) 1.24 (1) 2.00 (2) 2.16 (2) 3.20 (4) 2.25 (2.8)

67.5 45 2.57 (0) 1.18 (0) 1.89 (0) 2.08 (0) 2.90 (0) 2.12 (0)
67.5 60 2.55 (0) 1.18 (0) 1.88 (0) 2.08 (0) 2.86 (0) 2.11 (0)
67.5 75 2.55 (0) 1.14 (0) 1.87 (0) 2.07 (0) 2.89 (0) 2.10 (0)
67.5 90 2.08 (0) 1.12 (1) 1.87 (1) 2.08 (0) 2.92 (0) 2.11 (0.4)
90 45 2.54 (0) 1.29 (0) 1.93 (0) 2.05 (0) 2.93 (0) 2.15 (0)
90 60 2.52 (0) 1.22 (0) 1.91 (0) 2.06 (0) 2.87 (0) 2.12 (0)
90 75 2.52 (0) 1.19 (0) 1.91 (0) 2.05 (0) 2.86 (0) 2.11 (0)
90 90 2.51 (0) 1.15 (1) 1.89 (0) 2.05 (0) 2.88 (0) 2.10 (0.2)

Table 4: Localization error as a function of camera FOV for a given camera orientation
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Figure 9: Effect of image resolution

FOV value. The results, summarized in Table 4.2, show that the best FOV choice
depends somewhat on the camera orientation – a smaller FOV for the 45◦ orientation
performed best, whereas the 90◦ FOV performed best on the 90◦ orientation. Looking
at the raw images, the wider FOV values at 45◦ orientation capture significant (non-
informative) areas of road and sky, which explains why narrower FOVs perform better
at this orientation. Aside from this, the effect of different FOV values overall is modest,
suggesting that the information content is distributed evenly across scales.

4.4 Image Resolution
The choice of image resolution determines the quality of camera (and, therefore, the
cost) needed for robust localization. In this experiment, we varied the resolution by
factors of two from 384 x 384 pixels down to 24 x 24 pixels. The results, shown in
Figure 9 and Table 4.4, show that reducing the image resolution does not have much of
a detrimental effect on localization. Even down to a resolution of 24 x 24 pixels, there
is almost a negligible gain in localization error. This suggests that even a very basic
camera could be used for visual localization and indicates that visual localization could
scale to extremely large data sets very effectively. This result is not too surprising,
since images at this resolution have also proven useful for recognition and classification
tasks [9]. Note that the good performance at low resolution may be tied to the image
descriptor used for the localization.

4.5 Image Frequency / Map Resolution
Image frequency affects the cost of a localization system in terms of the quality of
camera needed (i.e., high frame-rate vs. low frame-rate) and the amount of storage
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Error (m)
Image Resolution Avg Max Stddev #Div

384x384 1.15 0.93 5.52 0
192x192 1.14 0.93 5.48 0

96x96 1.13 0.92 5.45 0
48x48 1.17 0.98 6.88 0
24x24 1.17 0.99 6.50 0

Table 5: Effect of image resolution on localization accuracy. Camera Orientation =
67.5◦ and FOV = 75◦.

Error (m)
Map Resolution Avg Max Stddev #Div

0.25 1.19 4.30 0.87 1
0.5 1.14 4.44 0.86 0
1 1.14 5.48 0.93 0
2 1.50 16.62 1.55 0
3 2.01 28.03 2.66 0
6 3.89 52.85 5.27 0

10 6.57 81.00 8.94 0
20 14.68 99.93 16.90 4
30 19.01 99.90 18.76 7

Table 6: Effect of map resolution on localization accuracy. Camera Orientation = 67.5◦

and FOV = 75◦.

needed for the map representation, both of which affect the cost of a fielded system.
To quantify the effect of image frequency, we vary the map resolution, i.e., the phys-
ical distance between nodes in the map. While map resolution and frame rate are not
equivalent, the effect of lower frame rates would be expected to be similar to that of a
lower map resolution.

To analyze the effect of map resolution, we varied the distance between map nodes
between 0.25 m to 30 m. The results, shown in Figure 10, show that the accuracy
increases approximately linearly with increasing map resolution up to 1 m resolution,
at which point no more improvement is seen. This limit on the maximum accuracy
is probably related to the accuracy of the ground truth in these data sets, which is
limited by the accuracy of the GPS/IMU used by the testbed vehicle. While the exact
localization accuracy will be algorithm-dependent, the relationship between accuracy
and map resolution suggests an upper limit on the required camera frame rate. For
example, if the maximum vehicle speed is 80 MPH ( 35 m/s), a frame rate of 7 fps will
ensure one image is captured every 5 m and the expected average localization accuracy
would be 2.5 m.
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Figure 10: Effect of map resolution on localization accuracy.

5 Environmental Factors
The previous section focused on configuration parameters and how they affect local-
ization accuracy. In this section, we address factors that are beyond the control of the
system designer. While there may be nothing that can be done from a system stand-
point with respect to these factors, it is nevertheless useful to understand how they
affect localization performance because these insights can drive development of new
and potentially more robust localization methods. Specifically, we consider three envi-
ronmental factors: environment type, time of day, and sunlight conditions. The effect
of seasonal variation has been studied previously [2, 10].

5.1 Environment Type
Different environmental settings offer different amounts and quality of visual features.
For example, we would expect rich visual features in commercial or downtown areas
but sparse features in rural areas. It is an open question whether localization is easier or
harder in specific types of environments. An understanding of what environment types
are most challenging can provide insight into where a localization algorithm is most
likely to break down.

To analyze the effect of environment type on localization accuracy, we separated
the data from test route 1 into three basic environmental types: rural/parklike, commer-
cial/downtown, and residential/suburban. In fact, the test route was chosen to provide
distinct, contiguous segments according to these categories. The results, shown in Ta-
ble 7, are somewhat surprising. While the rural/parklike segment proved to be the least
accurate, the residential/suburban segment accuracy was actually better than the com-
mercial segment. One possible reason for this unexpected result is that the commercial
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Table 7: Effect of environment type on localization accuracy.

Error (m)
Environment Avg Max Stddev Div
Rural 1.45 5.26 1.04 0
Commercial 1.14 4.09 0.80 0
Residential 1.07 4.68 0.82 0

areas have significantly more traffic and also variability on the roadside due to changing
parked cars in different trials. Another explanation may be that the commercial areas,
while more structured and feature rich also have more repetitive patterns, such as re-
peating windows on buildings, which can cause increased uncertainty at a fine-grain
scale when localizing.

5.2 Time of Day and Sunlight Conditions
The time of day can have a significant effect on the appearance of a scene, particularly
on sunny days. The appearance of shadows, which change over time, can dominate
more stable features in the environment. The sun position during early mornings and
late afternoons or evenings can create artifacts in the image due to sensor saturation,
and the extreme brightness variations can exceed the dynamic range of standard cam-
eras. Furthermore, factors not related to illumination can affect the appearance of the
environment. For example, typically, commercial areas will experience less traffic in
the mid-morning than in the afternoon, when localization may be more challenging due
to additional clutter from parked cars, people, and traffic.

We studied the effects of time of day and lighting conditions by conducting trials
at various times of the day on a sunny day (morning, noon, afternoon, and evening)
and on cloudy and partly cloudy days. We used the morning trial for creating the
map and compared localization accuracy across the remaining trials. The results of the
experiment, shown in Figure 8 show, for the most part, what intuition suggests. The
bigger the difference in time of day, the more challenging the localization task becomes.
The graph includes two surprises, however. First, the localization error for the noon
trial was slightly higher than the afternoon one. This could be due to the fact that the
noon trial was conducted on the next day due to changing weather conditions. The
second surprise was that cloudy and partly cloudy conditions were more challenging to
match with the sunny morning map than different times of day under sunny conditions.
Intuitively, no shadows would match morning shadows better than afternoon shadows.

6 Summary and Conclusions
We have studied how the choice of sensor configuration parameters and how various
environmental factors affect the performance of visual localization. We conducted an
extensive series of experiments using both forward-facing cameras and virtual cam-
eras extracted from panoramic imagery. Using an information-theoretic approach, we
established a relationship between the information content of image regions and the
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Figure 11: Comparison of the naive, front-facing camera (forward facing), initial best
guess configuration (best guess) with the best-performing configuration determined
from the analysis (best result).

usefulness of those regions for localization. Our findings reflect the intuition that the
sides of the road provide the most benefit for localization algorithms. Interestingly,
many visual localization and mapping algorithms focus primarily on forward-looking
cameras [1, 5, 6, 8]. Our findings suggest that a better approach would be to point
the cameras at an angle of 45◦ or more away from front-facing, or at least masking
out the road and sky regions of the image. We compared our initial choice for the best
performance of the localization algorithm used in this paper with the revised choice
based on the insights from this analysis (orientation = 90◦, FOV = 75◦, image reso-
lution = 192x192, map resolution = 1 m). The results (Figure 11) show significant
improvement, with a reduction in average localization error of 4% and elimination of
all temporary divergences, and a reduction over the error of a front-facing camera of
53%.
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