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Abstract— Localization is a central problem for intelligent
vehicles. Visual localization can supplement or replace GPS-
based localization approaches in situations where GPS is
unavailable or inaccurate. Although visual localization has
been demonstrated in a variety of algorithms and systems,
the problem of how to best configure such a system remains
largely an open question. Design choices, such as “where should
the camera be placed?” and “how should it be oriented?” can
have substantial effect on the cost and robustness of a fielded
intelligent vehicle. This paper analyzes how different sensor
configuration parameters and environmental conditions affect
visual localization performance with the goal of understanding
what causes certain configurations to perform better than oth-
ers and providing general principles for configuring systems for
visual localization. We ground the investigation using extensive
field testing of a visual localization algorithm, and the data
sets used for the analysis are made available for comparative
evaluation.

I. INTRODUCTION

Localization is a central problem in robotics – a problem
that must be addressed in many intelligent vehicle applica-
tions. For example, visual SLAM algorithms (e.g., [7], [8],
[17]) use localization to dynamically build up a map and de-
tect loop closures, while commercial automotive navigation
systems and visual localization algorithms (e.g., topometric
localization [6]) determine a vehicle’s position with respect
to a prior map.

While localization can often be accomplished using GPS,
an autonomous vehicle must be robust to situations where
GPS is unavailable, such as when driving downtown in large
cities or along forested, rural roads. Furthermore, localized
GPS jamming is becoming increasingly common. As a
consequence, fielded autonomous vehicles will likely need
to incorporate alternative sensing modalities for localization.
Appearance-based (i.e., visual) localization is one promising
candidate.

Although visual localization has been demonstrated in
a variety of algorithms and systems [1], [5], [6], [12],
[19] the problem of how to best configure such a system
remains largely an open question. When developing a visual
localization algorithm, a designer is faced with a number of
trade-offs in terms of choice of camera, number of cameras,
configuration of optics, sensor orientation, and frame rate.
Will the algorithm be robust with a lower resolution, hence
lower cost, camera? How wide should the camera’s field of
view be? How many cameras are necessary, and which way
should they be oriented? Such choices can have a substantial
effect on the cost and robustness of a fielded product.

The goal of this paper is to gain an understanding of
how different sensor configuration parameters and environ-
mental conditions affect visual localization algorithms. By
studying these effects, we can not only better understand
how to configure a visual localization system, but also
gain understanding of the underlying reasons that some
configurations perform better than others. We will ground
our investigation using extensive field testing of a visual
topometric localization algorithm [5]. The conclusions, how-
ever, could be generalized to other algorithms that employ
visual localization [8], [14]. The key contributions of this
paper are: 1) a detailed study of the relationship between
system configuration and visual localization performance; 2)
an analysis of the underlying causes for certain regions of
the viewing sphere around a vehicle to be more effective for
localization; and 3) a large-scale, publicly available data set
of panoramic imagery with ground truth localization for the
research community.

II. RELATED WORK

Localizing an observer by means of evaluating the ac-
quired images of the environment is a technique that has
been widely explored in the literature. The most used tech-
niques, such as SLAM [9], [13] and visual odometry [4],
rely on geometric constraints on the structure of the world
and its projection onto the images. These methods usually
perform feature tracking, triangulation, and pose estima-
tion, providing metric information of the location of the
cameras. Alternative approaches to localization deal with
place recognition [8], [23], where localization is achieved
by identifying previously visited locations. These methods
extract features from the images and create a topological
map of the environment modeled by a graph. Features from
the current view are then matched to those in the map to
identify the location of the observer within the graph.

Despite the large amount of previous work on visual local-
ization, relatively little of this work explores the robustness of
the algorithms to various changes in the environment. Typical
test data is gathered all at one time [7] or over a period of a
few days [8] without controlling for such factors as illumina-
tion. However, some researchers have explored the effects of
time and environmental variation on localization and place
recognition. Glover et al. [11] measured the performance
of various SLAM algorithms using data sets from different
times of the day. Valgren and Lilienthal [24] evaluated the
performance of SIFT and SURF in the context of long-term
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Fig. 1. (a) The Navlab 11 data collection testbed used in this study. (b) A close-up of the mounting of the Ladybug 5 panoramic camera. (c) Test route
1 contains sections of rural/park (marker A to B), urban (B to C), and neighborhood (C to A) environments. (d) Test route 2.

topological localization. Data sets were acquired over long
periods of time to capture the natural seasonal changes in
an outdoor environment. The authors concluded that SURF
performs better than SIFT for the purpose of localization in
outdoor environments. Badino et al. [6] also analyzed the
localization performance across seasonal variations using a
topometric approach. Similarly, Milford et al. [17] developed
a robust localization algorithm adding temporal filtering to
an image template matching technique. The authors show
results on data acquired over different seasons and weather
conditions. More recently, Neubert et al. [19] showed that
location matching can be improved by actively predicting
the effect of seasonal variations.

The effects of sensor configuration choices have been
studied only to a limited extent. Typically, systems are
designed and configured using trial and error or intuition,
and the methods for making the decisions are not nor-
mally documented. Vision-based odometry or localization
algorithms are usually evaluated using either front-facing
cameras [1], [11], [16], [19] or cameras pointed to the
side [7], [20], [21] and using average focal length lenses.
Some researchers have proposed using panoramic [3], [18]
or omni-directional imagery [15], which could potentially
improve localization by using a much wider field of view
(FOV). However, our analysis shows that a wider FOV does
not necessarily improve localization accuracy. An alternative
to explicitly configuring the camera orientation and FOV is to
actively learn what part of an image contains useful features
for localization. Hafez et al. [12] showed that weights for
discriminative features (ones which remain consistent both
spatially and temporally) can be learned by traversing the
same route multiple times. The insights from our work could
be leveraged to improve such an approach by identifying the
most useful direction to aim the camera’s limited viewing
area, thus enabling the algorithm to learn better features in
fewer iterations.

While visual localization has been studied extensively,
there are no standard, publicly available data sets that can
be used to compare the effectiveness of different approaches
across different environmental and sensor configuration con-
ditions. Several data sets for visual localization have been
made available (e.g., KITTI [10] and FAB-MAP [8]), but
these data sets were designed for different problems – visual

odometry for KITTI and loop-closure detection for FAB-
MAP. To test performance under different environmental
conditions, it is necessary to traverse the same route multiple
times under different conditions, as is provided by our data
set. Furthermore, repeated route traversal is more suitable for
testing localization with respect to a prior map.

III. FRAMEWORK

The questions posed in this paper can only be answered
using an extensive data set that covers the range of config-
urations that could be utilized for a localization algorithm
as well as the diverse environmental conditions that such an
algorithm may face. Ideally, it would be possible to control
every parameter and condition independently, but that is
challenging, except with synthetic data. Knowing that some
aspects of the localization problem would not be modeled
with synthetic data, we chose to focus on real-world data
collection, with the goal of minimizing differences between
data sets with respect to parameters or conditions not being
controlled.

A. Data Collection Testbed

Our data collection testbed is based on the Navlab 11
autonomous vehicle (Figure 1a). Among other things, the
vehicle is equipped with an IMU, GPS, and a computing
infrastructure that enables real-time data synchronization
and logging. We augmented the baseline platform with a
Point Grey Ladybug 5 panoramic camera mounted above
the hood (Figure 1b). The camera captures six 2448 x 2048
images at 10 fps. The images can be stitched together into a
panorama that covers 90% of the viewing sphere. The benefit
of the panoramic camera is that it enables the comparison
of different viewing directions and fields of view for the
exact same data sequence. Virtual video streams are extracted
from the panoramic video by cropping different sections of
the stitched spherical panorama and rectifying the image
following a pinhole model. One downside to this virtual
camera approach is that the position of the virtual camera is
limited to the position of the actual camera, so, for example,
it is not possible to generate an image for a virtual camera
mounted on the front bumper.



TABLE I
DATASET DESCRIPTION

Dataset Morning Partly Cloudy Afternoon Evening Noon Cloudy Bay 1 Bay 2
Route length (Km) 16.2 16.4 16.3 16.3 12.3 12.4 4.4 4.4

Date (in 2013) Oct 8 Oct 8 Oct 8 Oct 8 Oct 9 Nov 7 July 18 July 19
Time of day 9:54 – 12:44 – 15:21 – 18:08 – 12:07 – 14:46 – 14:00 – 9:54 –

10:28 13:21 16:04 18:47 12:39 15:14 14:11 10:03

B. Data Sets

We first identify the main system configuration parameters
and environmental conditions that could affect the perfor-
mance of a localization algorithm. In this paper, we consider
four configuration parameters: camera orientation, camera
field of view, image resolution, and video frame rate. We
also analyze three environmental parameters: time of day
(morning, midday, afternoon, dusk), sunlight (sunny, cloudy),
and environment (commercial, residential, rural). We do not
consider seasonal variations and adverse weather conditions
such as fog, rain, and snow, or nighttime driving, which have
been studied previously [6], [17], [24].

We established a consistent data collection route to enable
comparison across these different conditions. The route,
shown in Figure 1c, is 16 km long and takes approximately
35 minutes to navigate (see Table I). The route consists of
distinct environmental segments: rural (a park), commercial
(medium-density commercial district), and residential (sub-
urban neighborhoods). We traversed the route multiple times
in the same day to obtain the time of day variations, and on
separate days, as weather permitted, to obtain the sunlight
variations.

The data sets are available online at http://3dvis.ri.cmu.edu
to enable researchers to evaluate and compare localization
algorithms on standard data sets. As mentioned in Section II,
no existing large scale data set for visual localization is
available. The data sets each consist of a sequence of time
stamped images along with synchronized vehicle location
ground truth obtained from the onboard IMU and GPS.

We also evaluate the performance of a purely front-facing
camera using two data sets from a dashboard-mounted cam-
era. The two data sets consist of a 4.4 km route (Figure 1d)
and were obtained at different times of the day on two
consecutive days.

IV. VISUAL TOPOMETRIC LOCALIZATION OVERVIEW

In order to ground our analysis of visual localization
configuration, we use an existing algorithm known as visual
topometric localization in our experiments. For complete-
ness, we briefly review the algorithm and its salient charac-
teristics. Details of the algorithm are found in [5] and [6].
Metric localization, such as those based on SLAM [2] and
visual odometry [4] are accurate for short distances, but they
drift over time or fail at long sequences, especially if the
vehicle does not revisit the same place on its trajectory. On
the other hand, topological localization methods, such as [23]
estimate the observer’s location qualitatively from a finite set
of possible positions avoiding localization drift but provide

only rough position estimates. Topometric localization was
first introduced in [5] and improved in [6] as a combination
of topological and metric localization. In topometric local-
ization, the space of possible locations is discretized and
modeled by a graph. Nodes in the graph represent possible
locations and edges of the graph connect adjacent locations.
Localization is achieved by finding the node associated to
the position of the vehicle. Thus, topometric localization
provides metric information of the location of the vehicle
while avoiding the typical drift of dead-reckoning algorithms.

Topometric localization involves two tasks: creating a map
of the environment and localizing with respect to the map.
In the map creation stage, a vehicle equipped with GPS and
a camera travels the route to be recognized. The location of
the vehicle is acquired at regular intervals and a graph of the
route is created. At the same time, features are extracted from
the acquired images and linked to the created nodes. The map
creation can be performed online, since the computation and
storage requirements are minimal.

In the localization stage, a vehicle without GPS drives over
the mapped routes acquiring imagery data. A Bayes filter is
used to estimate the probability distribution of the position of
the vehicle by matching features extracted from the images
with those already stored in the map database. The Bayes
filter further propagates the probabilities within the graph as
the vehicle moves between connected nodes. The estimated
location of the vehicle is obtained after each measurement
from the maximum a posteriori (MAP) probability.

Topometric localization has been shown to be robust to
extreme changes in the environment such as those produced
by seasonal changes, lighting differences, and occlusions
thanks to the appropriate design of the Bayes filter [6].
Furthermore, the computational and storage requirements
are very low, making it suitable for very large scale urban
localization.

A. Evaluation Criteria

The localization accuracy is computed with respect to the
GPS-based ground truth in terms of longitudinal error (i.e.,
along the route). In this paper, we do not consider lateral
error (i.e., across the lanes), since that is not the primary
goal of route localization. The ground-truth position and the
estimated position are, therefore, projected to the trajectory
map to compute the position error along the route.

For each experiment, we report four statistics: average
localization error (Avg), maximum localization error (Max),
standard deviation (Stddev), and number of divergences
(#Div). A divergence is defined as occurring when the
localization error exceeds 30 m. In the map resolution
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Fig. 2. Localization accuracy for region selection vs. baseline over an entire route.

experiment (Section V-F), this threshold is set to 100 m to
allow testing of image frequencies on the order of 30 m.
The remaining three statistics are computed using only non-
diverging regions. All errors are reported in units of meters.

V. SENSOR CONFIGURATION ANALYSIS

We divide our analysis into factors that can be controlled
by the developer and those that are outside of the developer’s
control. In this section, we analyze the design choices related
to sensor configuration: region selection, orientation, field of
view, image resolution, and image rate.

A. An Information-theoretic Viewpoint

Consider an image taken from a forward-looking camera
on a vehicle. A typical scene contains regions of relatively
unchanging objects, such as road, sky, and the traffic, and
more variable objects, such as buildings, trees, and signs on
the sides. Intuitively, unique landmarks, such as particular
buildings, are more informative for determining location than
generic objects (e.g., trees, road, and sky) or moving objects
(e.g., traffic). Furthermore, objects on the sides of the vehicle
can provide more constraint on position estimates in the
route direction. That is, their motion gradient is parallel
to the route and, consequently, they constrain the vehicle
location in the direction that most affects localization error.
Therefore, we hypothesize that a good sensor configuration
for localization will focus the sensing on the sides of the
road. However, side-facing sensors could actually perform
worse due to mitigating factors, such as motion blur and the
limited time that objects are within the sensor’s field of view.

We can use information theory to formalize and mathemat-
ically quantify how unique or interesting an image region is.
It is well-known from information theory that entropy is a
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Fig. 3. (a) The heat map showing the most informative regions of the
view (b) Overlaying the mask onto the original image and thresholding low
values shows that the informative regions lie on the sides of the road.

measure of the amount of information in a distribution. Here,
we compute the entropy of each pixel location over all the
images from an entire route.

H = −
∑
i

pilog(pi),

where pi is the probability distribution of grey-scale intensity
values at each pixel location. The resulting entropy-based
heat map normalized to [0,1] in Figure 3 shows graphically
that the left and right sides of the road have higher entropy,
and therefore contain more information than the other re-
gions, such as the hood, sky, and the road itself. Similar
patterns were observed in other data sets that used different
camera configuration settings.

B. Region Selection

The question, now, is whether focusing on the regions
containing more information actually leads to better lo-
calization. Without any knowledge as to which section of
the image is more informative, an image descriptor would
allocate equal weight to potentially informative regions (e.g.,
a building) as to regions with no information (e.g., the sky).
Therefore, our hypothesis is that focusing feature extraction
on the more informative image regions can lead to improved
localization performance. We tested this hypothesis using
the forward-looking camera from test route 2 (Figure 1d)
and the localization algorithm described in Section IV to
evaluate different sub-regions of the image. We sequentially
removed the least informative regions of the image: the hood,
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Fig. 4. Region selection. Incrementally informative sub-regions: 1. Baseline
(entire image); 2. Omit hood (red); 3. Omit hood/sky (blue); 4. Omit
hood/sky/road (purple).



  

Fig. 5. Region selection using camera orientation = 45◦ and FOV = 90◦.

TABLE II
REGION SELECTION. ELIMINATING NON-INFORMATIVE REGIONS

IMPROVES LOCALIZATION ACCURACY.

Error (m)
Experiment Name Avg Max Stddev #Div
1. Baseline 3.58 20.43 4.04 0
2. Omit hood 1.39 12.65 2.11 0
3. Omit hood/sky 1.09 9.21 1.38 0
4. Omit hood/sky/road 0.75 6.45 0.83 0

the sky, and, finally, the road (Figure 4). The results, shown
in Table II, show that localization accuracy increases when
focusing on successively more informative sub-regions. We
have also experimentally verified that the the uncertainty in
the localization decreases. Selection of just the side-looking
regions reduces the average error by 79%. Figure 2 shows
graphically the effect of selecting informative sub-regions
over an entire route.

To test the generality of these observations, we conducted
a similar analysis using a different dataset that also used
a different camera, optics, and route. In this case, we used
images from test route 1, virtual cameras with 45◦ orientation
from front-facing, and 90◦ FOV. Using manually selected
regions (Figure 5) to discard the sky and road results in a
reduction of localization error in every test case (Figure 6).
Though the improvement in localization accuracy is less in
this case, but the number of divergences is reduced to zero
by region selection (Table III).

C. Camera Orientation

The previous section showed that informative regions of
the image correlate well with localization accuracy. Now
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Fig. 6. Result of using region selection shown in Figure 5 using the
database from the “morning” trial.

TABLE III
REGION SELECTION. ELIMINATING NON-INFORMATIVE REGIONS

REDUCES LOCALIZATION ERROR AND DIVERGENCES.

Avg Error (#Div)
Time of Day Baseline Region Selection

Noon 2.67 (0) 2.59 (0)
Afternoon 1.25 (1) 1.18 (0)
Evening 2.00 (2) 1.84 (0)

Partly Cloudy 2.16 (2) 2.06 (0)
Cloudy 3.20 (2) 2.89 (0)
Mean 2.26 (1.4) 2.11 (0)

we return to the original question as to whether sideways-
looking cameras improve localization accuracy, or, more pre-
cisely, which direction should a camera be pointed to achieve
the best performance? To analyze this question, we used
images extracted from the panoramic camera image, varying
the virtual camera orientation from 0◦ (front-facing) to 90◦ in
increments of 22.5◦ while keeping the FOV constant at 90◦.
The results, shown in Figure 7, show that accuracy improves
steadily with increasing orientation toward the side, but the
improvement between 67.5◦ and 90◦ is minimal. Looking
at the original images, these last two orientations contain
minimal amount of low-information regions (i.e., road and
sky).

D. Field of View

Field of view (FOV) is yet another parameter that can
affect localization performance. Increasing the FOV observes
a wider area and potentially more distinctive locations.
However, for a given image resolution, a wider FOV reduces
the detail at the pixel level. It is not obvious which factor is
more influential. An additional question is whether the best
FOV choice is the same for different camera orientations.

To test these ideas, we conducted an experiment similar to
the one for camera orientation. Using the panoramic camera,
we extracted sub-images with FOV values ranging from 45◦

to 90◦ in 15◦ increments. We used the same data sets as in the
orientation experiment and, in fact, tested all combinations of
orientation with each FOV value. The results, summarized in
Table IV, show that the best FOV choice depends somewhat
on the camera orientation – a smaller FOV for the 45◦ orien-
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Fig. 7. The effect of camera orientation on localization accuracy.



TABLE IV
LOCALIZATION ERROR AND DIVERGENCES AS A FUNCTION OF CAMERA FOV FOR A GIVEN CAMERA ORIENTATION

Camera Parameters Time of Day
Orientation FOV Noon Afternoon Evening Partly Cloudy Cloudy Mean

0 90 3.36 (2) 2.51 (1) 2.10 (4) 2.78 (4) 3.29 (3) 2.81 (2.8)
22.5 90 2.94 (0) 1.67 (1) 2.03 (2) 2.43 (2) 3.20 (1) 2.46 (1.2)
45 45 2.58 (0) 1.22 (0) 1.85 (0) 2.06 (0) 2.89 (0) 2.12 (0)
45 60 3.19 (1) 1.21 (0) 1.86 (0) 2.10 (0) 2.88 (0) 2.25 (0.2)
45 75 2.66 (0) 1.20 (1) 1.95 (4) 2.10 (0) 3.10 (2) 2.20 (1.6)
45 90 2.67 (0) 1.24 (1) 2.00 (2) 2.16 (2) 3.20 (4) 2.25 (2.8)

67.5 45 2.57 (0) 1.18 (0) 1.89 (0) 2.08 (0) 2.90 (0) 2.12 (0)
67.5 60 2.55 (0) 1.18 (0) 1.88 (0) 2.08 (0) 2.86 (0) 2.11 (0)
67.5 75 2.55 (0) 1.14 (0) 1.87 (0) 2.07 (0) 2.89 (0) 2.10 (0)
67.5 90 2.08 (0) 1.12 (1) 1.87 (1) 2.08 (0) 2.92 (0) 2.11 (0.4)
90 45 2.54 (0) 1.29 (0) 1.93 (0) 2.05 (0) 2.93 (0) 2.15 (0)
90 60 2.52 (0) 1.22 (0) 1.91 (0) 2.06 (0) 2.87 (0) 2.12 (0)
90 75 2.52 (0) 1.19 (0) 1.91 (0) 2.05 (0) 2.86 (0) 2.11 (0)
90 90 2.51 (0) 1.15 (1) 1.89 (0) 2.05 (0) 2.88 (0) 2.10 (0.2)

tation performed best, whereas the 75◦ FOV performed best
on the 67.5◦ and 90◦ orientation. Looking at the raw images,
the wider FOV values at 45◦ orientation capture significant
(non-informative) areas of road and sky, which explains why
narrower FOVs perform better at this orientation. Aside from
this, the effect of different FOV values overall is modest,
suggesting that the information content is distributed evenly
across scales.

E. Image Resolution

The choice of image resolution determines the quality of
camera (and, therefore, the cost) needed for robust localiza-
tion. In this experiment, we varied the resolution by factors
of two from 384x384 pixels down to 24x24 pixels. The
results, shown in Figure 8 and Table V, show that reducing
the image resolution does not have much of a detrimental
effect on localization. Even down to a resolution of 24x24
pixels, there is almost a negligible gain in localization error.
This suggests that even a very basic camera could be used for
visual localization and indicates that visual localization could
scale to extremely large data sets very effectively. This result
is not too surprising, since images at this resolution have also
proven useful for recognition and classification tasks [22].
Note that the good performance at low resolution may be
tied to the image descriptor used for the localization.

TABLE V
EFFECT OF IMAGE RESOLUTION ON LOCALIZATION ACCURACY.

CAMERA ORIENTATION = 67.5◦ AND FOV = 75◦ .

Error (m)
Image Resolution Avg Max Stddev #Div

384x384 1.15 0.93 5.52 0
192x192 1.14 0.93 5.48 0

96x96 1.13 0.92 5.45 0
48x48 1.17 0.98 6.88 0
24x24 1.17 0.99 6.50 0

F. Image Frequency / Map Resolution

Image frequency affects the cost of a localization system
in terms of the quality of camera needed (i.e., high frame-rate
vs. low frame-rate) and the amount of storage needed for the
map representation, both of which affect the cost of a fielded
system. To quantify the effect of image frequency, we vary
the map resolution, i.e., the physical distance between nodes
in the map. While map resolution and frame rate are not
equivalent, the effect of lower frame rates would be expected
to be similar to that of a lower map resolution.

To analyze the effect of map resolution, we varied the
distance between map nodes between 0.25 m to 30 m. The
results, shown in Figure 9 and Table VI, show that the
accuracy increases approximately linearly with increasing
map resolution up to 1 m resolution, at which point no
more improvement is seen. This limit on the maximum
accuracy is probably related to the accuracy of the ground
truth in these data sets, which is limited by the accuracy
of the GPS/IMU used by the testbed vehicle. While the
exact localization accuracy will be algorithm-dependent, the
relationship between accuracy and map resolution suggests
an upper limit on the required camera frame rate. For
example, if the maximum vehicle speed is 80 MPH (35 m/s),
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Fig. 8. Effect of image resolution



TABLE VI
EFFECT OF MAP RESOLUTION ON LOCALIZATION ACCURACY. CAMERA

ORIENTATION = 67.5◦ AND FOV = 75◦ .

Error (m)
Map Resolution Avg Max Stddev #Div

0.25 1.19 4.30 0.87 1
0.5 1.14 4.44 0.86 0
1 1.14 5.48 0.93 0
2 1.50 16.62 1.55 0
3 2.01 28.03 2.66 0
6 3.89 52.85 5.27 0
10 6.57 81.00 8.94 0
20 14.68 99.93 16.90 4
30 19.01 99.90 18.76 7

a frame rate of 7 fps will ensure one image is captured every
5 m and the expected average localization accuracy would
be 2.5 m.

VI. ENVIRONMENTAL FACTORS

The previous section focused on system configuration
parameters and how they affect localization accuracy. In
this section, we address factors that are beyond the control
of the system designer. While there may be nothing that
can be done from a system standpoint with respect to
these factors, it is nevertheless useful to understand how
they affect localization performance because these insights
can drive development of new and potentially more robust
localization methods. Specifically, we consider three environ-
mental factors: environment type, time of day, and sunlight
conditions. The effect of seasonal variation has been studied
previously [6], [24].

A. Environment Type

Different environmental settings offer different amounts
and quality of visual features. For example, we would expect
rich visual features in commercial or downtown areas but
sparse features in rural areas. It is an open question whether
localization is easier or harder in specific types of environ-
ments. An understanding of what environment types are most
challenging can provide insight into where a localization
algorithm is most likely to break down.
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Fig. 9. Error as a function of map resolution.

TABLE VII
EFFECT OF ENVIRONMENT TYPE ON LOCALIZATION ACCURACY.

Error (m)
Environment Avg Max Stddev #Div
Rural 1.45 5.26 1.04 0
Commercial 1.14 4.09 0.80 0
Residential 1.07 4.68 0.82 0

To analyze the effect of environment type on localization
accuracy, we separated the data from test route 1 into
three basic environmental types: rural/parklike, commer-
cial/downtown, and residential/suburban. In fact, the test
route was chosen to provide distinct, contiguous segments ac-
cording to these categories. The results, shown in Table VII,
are somewhat surprising. While the rural/parklike segment
proved to be the least accurate, the residential/suburban
segment accuracy was actually better than the commercial
segment. One possible reason for this unexpected result is
that the commercial areas have significantly more traffic
and also variability on the roadside due to changing parked
cars in different trials. Another explanation may be that the
commercial areas, while more structured and feature rich also
have more repetitive patterns, such as repeating windows on
buildings, which can cause increased uncertainty at a fine-
grain scale when localizing.

B. Time of Day and Sunlight Conditions

The time of day can have a significant effect on the
appearance of a scene, particularly on sunny days. The ap-
pearance of shadows, which change over time, can dominate
more stable features in the environment. The sun position
during early mornings and late afternoons or evenings can
create artifacts in the image due to sensor saturation, and
the extreme brightness variations can exceed the dynamic
range of standard cameras. Furthermore, factors not related
to illumination can affect the appearance of the environment.
For example, typically, commercial areas will experience
less traffic in the mid-morning than in the afternoon, when
localization may be more challenging due to additional
clutter from parked cars, people, and traffic.

We studied the effects of time of day and lighting condi-
tions by conducting trials at various times of the day on a
sunny day (morning, noon, afternoon, and evening) and on
cloudy and partly cloudy days. We used the morning trial for
creating the map and compared localization accuracy across
the remaining trials. The results of the experiment, shown in
Figure 7 show, for the most part, what intuition suggests. The
bigger the difference in time of day, the more challenging the
localization task becomes. The graph includes two surprises,
however. First, the localization error for the noon trial was
slightly higher than the afternoon one. This could be due to
the fact that the noon trial was conducted on the next day due
to changing weather conditions. The second surprise was that
cloudy and partly cloudy conditions were more challenging
to match with the sunny morning map than different times of
day under sunny conditions. Intuitively, “no shadows” would
match morning shadows better than afternoon shadows.
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Fig. 10. Comparison of the naive, front-facing camera (forward facing), initial best guess configuration (best guess) with the best-performing configuration
determined from the analysis (best result).

VII. SUMMARY AND CONCLUSIONS

In this paper, we have studied how the choice of sen-
sor configuration parameters and how various environmen-
tal factors affect the performance of visual localization.
We conducted an extensive series of experiments using
both forward-facing cameras and virtual cameras extracted
from panoramic imagery. Using an information-theoretic
approach, we established a relationship between the infor-
mation content of image regions and the usefulness of those
regions for localization. Our findings reflect the intuition
that the sides of the road provide the most benefit for lo-
calization algorithms. Interestingly, many visual localization
and mapping algorithms focus primarily on forward-looking
cameras [1], [11], [12], [19]. Our findings suggest that a
better approach would be to point the cameras at an angle
of 45◦ or more away from front-facing, or at least masking
out the road and sky regions of the image. We compared our
initial choice for the best performance of the localization
algorithm used in this paper with the revised choice based
on the insights from this analysis (orientation = 67.5◦,
FOV = 75◦, image resolution = 192x192, map resolution =
1 m). The results (Figure 10) show significant improvement,
with a reduction in average localization error of 4% and
elimination of all temporary divergences, and a reduction
over the error of a front-facing camera of 53%. Finally,
the raw data used in our analysis has been made publicly
available for other researchers to use in benchmarking visual
localization algorithms.
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