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Abstract

We study video-specific autoencoders that allow a human
user to explore, edit, and efficiently transmit videos. Prior
work has independently looked at these problems (and sub-
problems) and proposed different formulations. In this work,
we train a simple autoencoder (from scratch) on multiple
frames of a specific video. We observe: (1) latent codes
learned by a video-specific autoencoder capture spatial and
temporal properties of that video; and (2) autoencoders can
project out-of-sample inputs onto the video-specific manifold.
These two properties allow us to explore, edit, and efficiently
transmit a video using one learned representation. For e.g.,
linear operations on latent codes allow users to visualize
the contents of a video. Associating latent codes of a video
and manifold projection enables users to make desired edits.
Interpolating latent codes and manifold projection allows
the transmission of sparse low-res frames over a network.

1. Introduction

In this work, we demonstrate that simple video-specific
autoencoders learn meaningful representations that enable a
multitude of video processing tasks, without being optimized
for any specific task. An autoencoder trained using individ-
ual frames (without any temporal information) of a specific
video via a simple reconstruction loss can learn both spatial
and temporal aspects of the video. Simple operations on its
latent code, encoder, and decoder enables a wide variety of
tasks including video exploration, video editing and video
transmission. To the best of our knowledge, we are the first
to explore such diverse video processing tasks using a single
representation not optimized for any specific task.

Contributions: (1) We introduce a simple, unsupervised
approach for learning video-specific exemplar representa-
tions without needing large training data. This representation
enables us to do a wide variety of the aforementioned video
processing tasks that generally require a dedicated approach.
(2) Our approach allows for intuitive user interaction, via
a low dimensional visualization of latent codes that allow
for video exploration and editing; and (3) finally, we demon-
strate that the latent codes and manifold created using a

single autoencoder allows for the transmission of sparse,
low-resolution frames over a network with the ability to
reconstruct the hi-res video using the autoencoder.

2. Related Work

There is a large body of work on specialized video pro-
cessing tasks such as video completion [16], video enhance-
ment [57], video inpainting [11, 22, 56], video editing [10,
36], temporal super-resolution [25, 34, 62], spatial super-
resolution [20, 55], space-time super-resolution [44, 45], re-
moving obstructions [30], varying speed of a video [8] or
the humans in it [33], video textures [1, 29, 42], finding un-
intentional events in a video [14], video prediction [50, 51],
generative modeling for associating two videos [6] discrim-
inative modeling for association [13, 40, 52], associating
multi-view videos [49], or pixel-level correspondences in a
video [4, 58]. In this work, rather than exploring specialized
architectures, we learn a single video-specific representation
that enables many of these tasks.
Learning from a Single Instance: There is plethora of
work that has explored representation learned using a sin-
gle image for various tasks [2, 17, 35, 47, 48, 54]. Recent
approaches [43, 46] have also explored image-specific repre-
sentation that enables a wide variety of image editing tasks.
Often there exists repetitive structure in a signal, such as
patch-recurrence in an image [2], that allows one to learn
meaningful representations for that signal without any addi-
tional information. We extend these observations to videos.
Our goal is to learn a representation for a video without any
additional information. Because we have more informative
data, we could learn a simple autoencoder that optimizes the
reconstruction of individual video frames. Prior work on
video processing [6, 16, 25] often encodes spatial-temporal
information explicitly. In this work, we considered frames
from a video as independent images. Despite this, our video-
specific autoencoder learns a continuous representation as
shown in Figure 1-(a).
Human-Controllable Representation: Usually the front-
end of an application is designed around the task of interest.
For example, prior work [3,15,61] on user-control are limited
to a task. In this work, we hope to provide users with a simple
representation that they can easily work with to design new
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Figure 1. Representations learned without temporal information using autoencoders: In each figure, a dot represents the latent
code of a frame from a video that the autoencoder is trained on. The latent code is reduced from a high dimension to a 2-dimensional
visualisation using PCA. (a) We find that video-specific autoencoders learn a temporally continuous representation without any explicit
temporal information, for example on a video of a blooming flower. (b) We observe that latent spaces are able to learn the repetitive motion
without using any temporal information, such as the repetitive motion of a situp. (c) Finally, distinct modes emerge when the autoencoder
encounters different visual concepts in a video. For this cheetah example, we see that the two modes represent two different running poses in
the video. We can also show the average image of each mode, as seen below the example.

application without much overhead (such as simple algebraic
operations on the latent codes). Our approach also allows a
user to see the contents of a video in a glance. Figure 1-(c)
shows how a user can explore the contents of a video and see
two prominent aspects of this video. Our work also aims at
reducing the requirement of application-dependent modules.
For e.g., object removal approaches [16] usually require a
user to provide extensive object-level mask across the video
or use an off-the-shelf segmentation module trained for a
particular object. Our learned representation allows us to
both: (1) track the object in the video when marked in a
single frame by a user and (2) edit the content.

3. Video-Specific Autoencoders
In this section, we review basic properties of autoen-

coders that we will exploit for various video editing tasks.
Recall that an autoencoder [18] compresses the informa-
tion in a signal via an encoding function. The compressed
signal or latent codes are represented using a few bits of
information. Given a set of frames from a video x ∈ V ,
video-specific autoencoders learn to encode each frame into
a low-dimensional latent code f(x) that can be decoded (via
a function g) back into the high-dimensional input space, so
as to minimize the reconstruction error:

min
f,g

∑
x∈V

||x− g(f(x))||2 (1)

We use a convolutional feed-forward model that inputs an
image and reconstructs it. Importantly, we ensure all opera-
tions are convolutional, implying that the size of the latent
code scales with the resolution of the video V . To ensure
that the latent code contains all the information needed to
reconstruct a video frame, we do not use skip connections.
Convolutional Encoder (f ): The encoder consists of six
2D convolutional layers. We use 5 × 5 kernels for first
four layers and a stride of 2 that downsamples the input by
0.5 after each convolution. The last two layers have 5 × 5
kernels without any downsampling. The output of each of
these layers is max-pooled in a 2×2 region with a stride of 2.
Each conv-layer is followed by batch-normalization [23] and
a ReLU activation function [27]. The output of last layer of
the encoder is used as a latent representation (or also termed
as latent code) in this work.
Convolutional Decoder (g): The decoder inputs the latent
code to reconstruct the output. It consists of six up-sampling
conv-layers with a 4 × 4 kernels and a stride of 2 that up-
samples the input by 2. Each conv-layer is followed by
batch-normalization and a ReLu activation function.
Latent Codes (f(x)): Given an input image x with shape
h×w, the encoder outputs an encoding with the shape (k ∗
12)× h

64×
w
64 , where k is the number of filters in the first layer

of encoder. We later show that such codes can be intuitively
visualized with low-dimensional projections (via 2D PCA).
For most experiments, we fix k = 64. This implies that for
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Figure 2. Manifold Projection with autoencoders: We train a video-specific autoencoder on 55 high-res 256× 512 frames. We visualize
the latent codes for the original frames using the red points on the left side. At test time, we input low-res versions of held-out frames of
varying resolution. We visualize the latent codes for the low-res input using the blue points. We also visualize the latent codes for the output
image using the yellow points. We observe that red points, blue points, and yellow points for (a) 8X super-resolution. We observe perfect
reconstruction for this input. The results, however, degrade as we further reduce the resolution of images, as seen in (b) 32X super-resolution.

Figure 3. Iterative Improvement via Reprojection Property: Given a 8× 16 image, we iteratively improve the quality of the output. The
reprojection property allows us to move towards a good solution with every iteration. At the end of the fifth iteration, we get a sharp hi-res
(256× 512) output despite beginning with an extremely low-res input. We show that iterative projection can lead to quantitatively better
exploration and transmission of videos.

an input frame of size h = 256 by w = 512, latent codes
compress inputs by a factor of 16.

Continuous Temporal Spaces: We study the space of la-
tent codes f(x) to examine the impact of temporal variation
of input frames xt, since the autoencoder is learned without
any explicit temporal input. We visualize the latent code
space via multidimensional scaling with PCA [9], as seen
in examples in Figure 1-(a). An autoencoder trained on a
specific video implicitly learns the correlations in the various
frames and a continuous temporal space emerges. This prop-
erty allows us to slow-down or speed-up a video (through
latent code resampling). Latent codes can also capture repet-
itive motion as shown in Figure 1-(b). This property allows
us to temporally edit the video.

Video-Specific Manifold (M ): We define the manifold of
an autoencoder to be the set of all possible output reconstruc-
tions obtainable with any input:

M = {g(f(x)) : ∀x}. (2)

where f, g are the “argmin” encoder and decoder learned
from (1). In our setting, M corresponds to be a video-
specific manifold of potential image/frame reconstructions.
It is well-known that feedforward autoencoders, when prop-
erly trained, act as projection operators that project out-of-
sample inputs x into the manifold set M [18].

||g(f(x))− x||2 = min
m∈M

||m− x||2, ∀x (3)

= min
x′

||g(f(x′))− x||2, ∀x. (4)
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(a) Per-pixel average (b) Latent code average (c) Latent code average (five iterations)

Figure 4. Video Averages: We compare a per-pixel average of video frames (a) with the decoded average of the latent codes of individual
video frames (b), which is far less blurry. We use the iterative reprojection property to sharpen the average image (c).

One can build intuition for above by appealing to linear
autoencoders, which can be learned with PCA. In this case,
the above equations point out the well-known fact that PCA
projects out-of-sample inputs into the closet point in the
linear subspace spanned by the training data [9]. We make
use of this property to “denoise” noisy input images x ̸∈ V
into manifold M (where noisy inputs can consist of e.g.,
blurry frames).
Manifold Reprojection: The reprojection property enables
the model to map noisy inputs x onto the video-specific
manifold M spanned by the training set. We write this as:

Project0(x) = g(f(x)). (5)

Figure 2 shows that 8X-downsampled inputs can be ef-
fectively upsampled by reprojecting a blurry bilinearly-
upsampled input x onto the video manifold. While results
are nearly perfect for 8X upsampling, reprojected outputs
contain visual artifacts for more agressive downsampled
inputs.
Iterative Reprojection: One can iteratively reproject out-
puts with an autoencoder:

Projectn(x) = g(f(Projectn−1(x))). (6)

For linear autoencoders, one can show that this iteration
converges after one step: Projectn(x) = Project0(x),∀n be-
cause a single linear projection ensures the output falls within
the linear subspace of the training data [9]. For nonlinear au-
toenoders, convergence may take longer and is not necessar-
ily guaranteed [18]. Figure 3 shows that one can iteratively
improve the quality of results for 32X super-resolution when
inputting a 8 × 16 image. Because it is not guaranteed to
converge, we use a fixed n = 5 in our experiments unless
otherwise noted.
Multi-Video Manifolds: Because our autoencoders are
learned with collections of frames, they can easily be trained
on frames from multiple videos. We show in our applica-
tions that such shared latent representations can be used to
compare, cluster, and process collections of videos.
Pixel Codes (fi(x)): Finally, we can use our encoder
to extract pixel-level representations, similar to past work

that extracts such representations from classification net-
works [5, 19]. Conceptually, one can resize each of the six
convolutional layers of the encoder f back to the original
image input size, and then extract out the “hyper”-column
of features aligned with pixel i. In practice, one can extract
features from the image-level encoder f(x) without resizing
through judicious bookkeeping. Our final pixel representa-
tion, written as fi(x) is 2176 dimensional.
Training Details: We train a video-specific autoenocder
from scratch using the Adam solver [26] with a batch-size of
6. The learning rate is kept constant to 0.0002 for first 100
epochs and then linearly decayed to zero over the next 100
epochs. For larger videos (i.e., more than 3, 000 frames), we
reduce the number of epochs to 40.

We now study various applications of autoencoders to
explore (Section 4), edit (Section 5), and efficiently transmit
videos (Section 6).

4. Exploring Videos

Video Averages: Arguably the simplest way to summarize a
video may be an pixelwise average of its frames [61]. Fig-
ure 4 compares this with a reconstructed average of latent
codes from a DAVIS video [39]. We contrast it with a simple
per-pixel mean of the frames, and observe sharper results
using our approach. We quantitatively show these improve-
ments in Table 1.
Video clustering: Latent codes can be used to discover
different visual modes in a video by clustering (e.g., with
k-means). Figure 1-(c) shows that two distinctive modes
naturally appear for videos with multiple shots. We also use
this property to cluster collections of videos by clustering
latent codes learned from multi-video manifolds (i.e., from
an autoencoder trained on frames from multiple videos; see
Appendix A).
Video exploration allow users to quickly peruse large
amounts of video (e.g., consider an analyst who must pro-
cess large amounts of surveillance video). A user can select
a region in the PCA-based 2D visualization that allows for
them to quickly visualize summaries by averaging arbitrary
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Eleven minute video of Mr. Bean

Figure 5. Video Exploration: We embed an 11-minute video with a video-specific autoencoder. Our approach allows us to quickly visualize
the contents of the video by providing an average summary of the selected region. A user can select the region on the 2D visualization.
Our approach generates the centroid of the points in selected region. We also show the mediod corresponding to each centroid. A user can
quickly glance by browsing over the points or selecting the region, and can also stitch representative/selected frames in the video.

FID [21] ↓

DAVIS [39]

Per-pixel Average 306.01

Latent Code Average 280.15

Latent Code Average + iterative 205.96

Table 1. Video Averages: We compare approaches for computing
an average frame from a video, using 50 videos from the DAVIS
dataset. We measure perceptual quality using the FID metric [21],
which measures the frechet distance between the average frame
and all frames of the corresponding video. We see that a simple
pixelwise average is not perceptually faithful to the video, while
averaging latent codes is more effective. Iteratively reprojecting
the latent reconstruction results in an even more faithful average.

subsets of video frames Vsubset ⊆ V :

g

(
1

|Vsubset|
∑

x∈Vsubset

f(x)

)
. (7)

We give an example of how to explore a video on an 11-
minute video in Figure 5.

5. Editing Videos
Video Textures: We can create infinite-loop video tex-
tures [42] from a short sequence, as seen in Figure 6. We can
find corresponding frames via a cosine similarity on latent
codes f(x1), f(x2). We emphasize two important distinc-
tions from prior work: (1) PCA visualization enables a user
to interactively define loops and even paths for the target
video; and (2) we can close loops without requiring an exact
match by interpolating nearby latent codes, which we see
in Figure 7. Table 2 shows the benefits of our interpolating
nearby latent codes.
Object Removal and Insertion: The reprojection property
of autoencoder also enables us to learn patch-level statistics
in a frame. To remove an object, we copy a patch from
surroundings to fill the bounding box. Despite discontinu-
ities, the autoencoder generates a continuous spatial image
as shown in Figure 8. We can also use the video-specific
autoencoder to insert the known content from the video in
a frame. The video-specific autoencoder also allows us to
stitch spread-out video frames as shown in Figure 9. We
naively concatenate the different frames and feed it through
the video-specific autoencoder, and the learned model can
generate a seamless output. Using the same property, we can
also stretch frames and do spatial extrapolation. Examples
in Appendix B.
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starttrajectory end

trajectory start end

Figure 6. Video Textures : We create arbitrary length video (also known as video textures) from an existing short sequence by making
continuous loops. Our ability to associate frames within a video using the latent codes enable us to create infinite loops for repetitive motion.
We show many examples in the supp material.

starttrajectory end

trajectory start end

Figure 7. User-Controllable Trajectories: A user can create trajectories they want for various videos using PCA visualization. Prior
approaches [42] find close loops to do video texture. It is not a strict requirement for our work as we are able to interpolate new frames
between x1 and x2 to smoothly transition between these frames.

LPIPS [59] ↓
PENN [60]
Frame Difference 0.136
Texture Difference 0.100

Table 2. Video Textures: We compare approaches for connecting
two similar frames from a video, using 50 videos from the PENN
dataset. We evaluate these approaches using LPIPS [59], which
measures the perceptual similarity between two images. Given
two similar frames x1 and x2, prior works would simply connect
these frames directly. However, these frames may not necessarily
have a smooth transition, while we can create arbitrarily long,
smooth video textures by continuously connecting frames with
interpolation. For every video, we take two frames x1 and x2

and calculate the LPIPS between them. Our method interpolates a
new frame between these two frames, and we calculate the LPIPS
between this new frame and x2. A lower score is better.

Pixel Correspondences and Mask Propagation: We use
our pixel codes to establish a pixel-wise correspondences
in the adjacent video frames via a cosine similarity mea-
sure. The pixel correspondences allow us to propagate the
instance labels from one frame to the rest of video. The
mask propagation is especially crucial from user perspective
as: (1) it is a tedious task to label entire video; and (2) it
helps us to use one less segmentation module in our system.
Crucially, we do not need perfect labels for spatial editing
as the video-specific autoencoder corrects the imperfections
due to its ability to generate continuous spatial outputs. We
show an example of mask propagation in Figure 10, and how

Task PSNR↑ SSIM↑

PENN [60]

SuperSlowMo [25] ✓ 31.060± 2.324 0.951± 0.018

Ours ✗ 33.643± 4.315 0.969± 0.020

Random Web Videos
SuperSlowMo [25] ✓ 34.156± 1.853 0.721± 0.100

Ours ✗ 34.274± 1.935 0.723± 0.100

Table 3. Temporal Super-Resolution: We contrast our approach
with an off-the-shelf SuperSlowMo [25] model. We use 150 videos
from Penn Action dataset. We show interpolation between every
other frames. The original frames (more than 10, 000 frames in
total) are used as a ground-truth for evaluation and not used for
training the video-specific autoencoders. We compute PSNR and
SSIM scores between the original frames and interpolated frames
(Higher is Better). Our approach achieves competitive perfor-
mance. We also compare our approach with SuperSloMo using
random web videos in the same manner.

we can use masks to edit videos.

6. Transmitting Videos
Finally, we examine applications of autoencoders mo-

tivated by real-time, low bit-rate video transmission (e.g.,
video conferencing). We envision a setting where one can
transmit network parameters off-line along with online trans-
mission of aggressively-subsampled frames, both temporally
and spatially. Such samples can then be decoded at the
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(a) Original Image (b) Replacing player with patches (c) Output

Figure 8. Spatial Editing: Given an image, a user can edit it by copy-pasting a patch from the surroundings to the target location and feed
it to the video-specific autoencoder. We show an example of spatial editing on a frame in the tennis video from the DAVIS [39] dataset. We
train an autoencoder on the tennis video. Given a frame from the video, we are able to remove the tennis player from the image by replacing
the player with surrounding patches in the image and passing it through the autoencoder.

(a) concatenated  input

(b) seamless output

Figure 9. Seamlessly Stitching Frames: We naively concatenate the spread-out frames in a video and feed it through the video-specific
autoencoder. The learned model generates a seamless output and can capture reflection and ripples in water.

receiver to produce hi-res, hi-frame rate video.
Transmitting Sparse Temporal Frames: We use simple
operation on latent-codes to slow-down (known as temporal
super-resolution) and speed-up a video. Given a frame xt and
xt+1, we can insert an arbitrary number of frames between
by linearly interpolating their latent codes:

g

(
αf(xt) + (1− α)f(xt+1)

)
, α ∈ [0, 1] (8)

We quantitatively compare our approach with Super
Slowmo [25]1 in Table 3. We use an off-the-shelf Super-
SlowMo [25] model trained on a large dataset in a supervised
manner specifically for the task of temporal super-resolution.
We use 150 videos (10 videos from each action) from Penn-
Action dataset [60]. We do 2X interpolation, i.e., interpolate
between every other frame. The original frames that are used
as a ground-truth for evaluation and are not used for train-
ing the video-specific autoencoder. We compute PSNR and
SSIM scores between the original frames and interpolated
frames. Higher is Better. Table 3 shows the performance of
our approach with SuperSlowMo [25]. We also contrast the
performance on random web videos in Table 3 and observe
competitive performance to SuperSlowMo.

We also study our approach using 90 videos of DAVIS
dataset [39] in Table 4. Sequences in DAVIS dataset consists

1We use the publicly available model from https://github.com/
avinashpaliwal/Super-SloMo.

of 50− 80 frames (roughly sampled at 5fps) with substan-
tial dynamics. Training a video-specific autoencoder with
alternate frames is challenging as it becomes even more
sparse. Since we do not use temporal information and op-
timize for temporal super-res, we contrast the performance
of our model when trained with all frames (ALL) and al-
ternate frames (ALT). We observe that performance of a
video-specific autoencoder degrades when trained on ex-
tremely sparse frames from a video with large camera and
object motion. We, however, observe that performance can
be improved by using iterative reprojection. This means we
can sparsely transmit frames over the network and do tempo-
ral super-res with iterative reprojection property to get dense
outputs. Finally, video-specific autoencoders enable arbi-
trary temporal resampling of a video, in contrast to previous
methods that are often trained for a fixed resampling factor
without being able to generalize to others [31, 32, 37]. Our
approach can also benefit from advances in temporal super-
resolution approaches [28, 38] using optical flow. However,
in this work we wanted to limit the use of an application-
dependent module.

Transmitting Low-Res Frames: Our goal is to transmit
minimal bits over network and yet be able to get an origi-
nal quality original video output at the reception. Spatial
super-resolution is enabled by the reprojection property of
the autoencoder (discussed in Section 3). The convolutional
autoencoder allows us to use videos of varying resolution.
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first frame (labeled) middle frame last frame

Figure 10. Instance Mask Propagation: Given the first labeled frame, we propagate the instance labels using the pixel codes. We show
here the labels in the first frame on the left. We show the propagated labels from the first frame to the middle and last frame of the video.
Using these propagated masks, and the method demonstrated in Fig. 8, we can then perform object removal on the video.

Task PSNR↑ SSIM↑

DAVIS [39]

Ours (ALT) ✗ 22.065± 5.205 0.728± 0.171

Ours (ALL) ✗ 24.272± 6.092 0.802± 0.154

Ours (ALL+iterative) ✗ 28.938± 7.356 0.883± 0.151

SuperSlowMo [25] ✓ 27.077± 5.950 0.871± 0.134

Table 4. Studying Influence of Sparse Samples on Video-Specific
Autoencoders via Temporal Super-Resolution: We study our ap-
proach with sparse frames from 90 videos of DAVIS dataset [39].
We show interpolation between every other frames. The original
frames are used as a ground-truth for evaluation. We consider
two scenarios: (1) using alternate (ALT) frames from a video for
training; and (2) using ALL frames from a video for training the
video-specific autoencoders (since we do not use temporal infor-
mation and optimize for this task). We compute PSNR and SSIM
scores between the original frames and interpolated frames (Higher
is Better). We observe that performance of video-specific autoen-
coders degrade when making samples extremely sparse, especially
for the video with large dynamics. We, however, observe that per-
formance can be improved by using iterative reprojection property.
This means we can sparsely transmit frames over the network and
do temporal super-res with iterative reprojection property to get
dense outputs at the reception. For reference, we also provide the
performance of an off-the-shelf SuperSlowMo [25] model.

We get temporally smooth outputs without using any tem-
poral information for all the experiments. We quantitatively
compare our approach with an off-the-shelf ESR-GAN [53]
model for 4X, 16X, and 64X super-resolution on 90 videos
(roughly 6, 000 frames) from DAVIS dataset [39]. ESR-

Task PSNR↑ SSIM↑

4X Super-Res
ESR-GAN [53] ✓ 26.886± 3.821 0.847± 0.087
Ours ✗ 31.493± 3.681 0.940± 0.053

16X Super-Res
ESR-GAN [53] ✓ 19.324± 3.163 0.605± 0.162
Ours ✗ 25.737± 3.511 0.856± 0.086

64X Super-Res
ESR-GAN [53] ✓ 15.441± 2.752 0.490± 0.170
Ours ✗ 17.862± 4.789 0.622± 0.196

Table 5. 4X, 16X, and 64X Spatial Super-Resolution: We contrast
our approach with an off-the-shelf ESR-GAN model [53] trained
for 4X super-resolution. For 16X super-resolution, we use the
ESR-GAN model twice. For 64X super-resolution, we use it three
times iteratively. We use 90 videos from DAVIS dataset [39] for
this evaluation. The original frames (256 × 512) are used as a
ground-truth for evaluation. We compute PSNR and SSIM scores
between the original frames and the outputs from two approaches
(Higher is Better). Our approach achieves better performance
without being optimized for the task.

GAN is trained for 4X super-resolution. We use it twice for
16X super-resolution, and thrice for 64X super-resolution.
Table 5 contrast our approach with ESR-GAN for these three
settings. Our approach achieves better performance with-
out being optimized for the task. We show examples in
Appendix C.

7. Discussion
An autoencoder trained using individual frames of a spe-

cific video without any temporal information can be used for
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a wide variety of tasks in video analytics without even opti-
mizing for any of those tasks. This feat could be possible by
careful analysis of spatial and temporal properties of a video-
specific autoencoder. We hope that an interface based on
this simple representation can enable users to easily design
new applications (not even explored in this work) without
much overhead such as simple algebraic operations on the
latent codes. We also hope that every video uploaded on web
get its autoencoder. It may not take a long time to train a
model but it can drastically reduce the amount of resources
required for video transmission, exploration, and processing
because once trained, the model can be used for fairly large
number of applications without much constraints.

8. Limitations and Societal Impact

400 hours of video data is uploaded to YouTube every
minute. The rich video data opens up enormous opportu-
nities for exploring the vast visual content. Creating ways
that allows a user to explore the contents of a video, edit
them, and efficiently transmit the content would provide a
comprehensive platform to the users. We take a small step
towards this grand goal. Our work requires training a video-
specific autoencoder. Training a new model at test time is
not instantaneous and it depends on the length of the videos.
We need to come up with faster ways to train a new model
and use insights from transfer learning such as a simple fine-
tuning. In this work, we also observe that training a reliable
model is challenging if the frames of a video are temporally
sparse. Such a situation is observed when the cameras are
fast moving like a hand-held camera. Our current evaluation
is conducted using standard video benchmarks and regular
web videos that are properly curated. We plan to collect
a wide variety of videos from hand-held devices for better
analysis. Finally, tools for editing videos can be misused for
spreading misinformation. While videos from any source
are not considered as an evidence in the court of law, they
are still important in forming public opinion on social media
like Twitter, Facebook, YouTube. Every time a viewer see
a generated video on these platforms, there needs to be a
banner displaying “This is a generated content.” so that they
do not make any opinions out of it.

A. Exploring a Video

Video-specific autoencoders work well on exemplar data
distribution. One may wonder their applicability for long
and diverse videos. We observe that latent codes of a trained
autoencoder can also separate different visual concepts. This
allows us to cluster a long video into multiple short videos.
In this section, we study this property using the task of
video classification for 90 videos in DAVIS dataset [39],
862 videos of JHMDB dataset [24], and 2326 videos in
Penn dataset [60]. We learn an autoencoder using all the

frames from each of these datasets. Once trained, we do
k-means clustering (where k is the number of videos in each
dataset) using the latent codes obtained from the trained
autoencoder. Figure 11-(a)-(c) demonstrates our ability to
separate different visual concepts. Here, we also contrast
with fc-7 features of an AlexNet model [27] trained on the
labeled ImageNet dataset [41]. We observe competitive
results. We also study the ability of a randomly-initialized
autoencoder. We use the latent codes from an untrained
autoencoder. We observe that even the randomly initialized
autoencoder can reliably separate different visual concepts.
Finally, we observe that both JHMDB and Penn-Action have
visually similar videos but with different ids. We, therefore,
computed the performance considering the “action” class of
each cluster instead of their video-id. The respective plots
are shown in Figure 11-(d)-(e).

We visualize various visual clusters (with purity of 1)
from DAVIS dataset in Figure 12. We show average images
for these clusters using the single autoencoder trained on all
frames. We can further sharpen these average images by fine-
tuning the autoencoder only on the examples in the cluster
for 5 iterations. We also visualize various impure clusters in
Figure 13 along with 2D visualization of latent codes for the
examples in each cluster. We observe that different concepts
within an impure cluster can further be separated. We also
visualize the clusters of Penn-Action dataset in Figure 14.
We observe that both JHMDB and Penn-Action dataset con-
sists of different videos that look similar because of different
reasons like same person and background but different ori-
entation, different camera location etc. We visualize these
interesting clusters in Figure 15. Finally, we visualize im-
pure clusters in Figure 16. Most of these clusters belong to
same action or have a similar background.

With these analysis, we posit that one may also use a
simple autoencoder to first cluster the different videos and
then use a video-specific autoencoder for each cluster, or
fine-tune the model for the cluster. These analysis also shows
the potential of autoencoders for average image exploration
and unsupervised learning of exemplar visual concepts. We,
however, leave them for the future work.

B. Editing a Video
Stitching and Stretching Video Frames: The ability of
the video-specific autoencoder to generate continuous spatial
imaging allows us to stitch spread-out video frames. Fig-
ure 17 shows various examples where we stitch random
frames from arbitrary videos with varying texture and con-
tent. We naively concatenate the different frames and feed it
through the video-specific autoencoder. The learned model
generates a seamless output. For e.g., the reflections in water,
and circular patterns formed by motorbike. More examples
in Figure 18.

The iterative reprojection property of autoencoder and its
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(a) DAVIS-90 videos (b) JHMDB-862 videos (c) Penn-2326 videos
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Figure 11. Visual concept discovery on three datasets: (a) DAVIS-90 videos [39]; (b) JHMDB-862 videos [24]; and (c) Penn-Action 2326
videos [60]. We naively concatenate all frames from each dataset and study various methods for recovering the original videos via clustering
with k-means (where K is the number of videos in each dataset), measuring purity vs. cumulative coverage. We compare AlexNet [27] fc-7
features pre-trained on ImageNet [41], a randomly initialized autoencoder (i.e., no training), and trained autoencoder. We observe that even
random weights of the autoencoder (without any training) can reliably separate visual concepts. Finally, we observe that both JHMDB and
Penn-Action have visually similar videos but with different ids. We, therefore, computed the performance considering the “action” class of
each cluster instead of their video-id. The respective plots are shown in (d) and (e). We also show area-under-curve for each method in the
legends of each plot.

ability to generate continuous spatial imaging allows us to
arbitrarily stretch a video frame. We show various examples
of stretching a 256 × 512 video frame to 256 × 2048 in
Figure 19.

Spatial Extrapolation: Our approach allows us to do
a spatial extrapolation as shown in Figure 20. Given a
256×512 image, we spatially extrapolate on its edges to cre-
ate a 512×1024 image. To do this, we mirror-pad the image
to the target size and feed it to the video-specific autoencoder.
We use the iterative reprojection property of the autoencoder.
After a few iterations, the video-specific autoencoder gen-
erates continuous spatial outputs. We also show the results
when zero padding the input image. We observe that mirror-
padded input preserves the spatial structural of the central
part, i.e., the actual input, whereas zero-padded input leads
to a different spatial structure. Instead of mirror-padding,
one may also place known content from the videos and yet
be able to get a valid output.

User-Controlled Editing: The ability of video-specific
autoencoder to generate continuous outputs from a noisy
input allows avenues for user-controlled editing. We show
this aspect in Figure 21 on stretched-out video frames as it
allows us to make multiple edits. Given an image, a user can

do the editing by copy-pasting a patch from surroundings to
the target location and feed it to the video-specific autoen-
coder. We can naively replace a forgeround object with a
background patch, and the video-specific autoencoder will
automatically correct the imperfections. We get consistent
results due to the reprojection property of the autoencoder
and its ability to generate continuous spatial image.

Insertion: We can also use the video-specific autoencoder
to insert the known content from the video in a frame as
shown in Figure 22. A user inserts patches from the far-apart
frames and feed it to the video-specific autoencoder. We
use the iterative reprojection property here. The autoencoder
generates a continuous and seamless spatial output. We,
however, observe that there are no guarantees if the video-
specific autoencoder (trained on a single scale) will preserve
the input edits all the times when foreground/moving objects
are inserted. It is very likely that it may generate a com-
pletely different output at that location. In the bottom row
of Figure 22, we inserted a number of small fish. The video-
specific autoencoder, however, chose to generate different
outputs. This behaviour would require more analysis of the
reprojection property and we leave it to the future work.

Pixel Correspondences: Finally, we show the results of
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Cluster: 002 (paragliding) Cluster: 006 (kite-walk) Cluster: 008 (mbike-trick) Cluster: 009 (schoolgirls)

Cluster: 012 (breakdance-flare) Cluster: 014 (camel) Cluster: 0015 (lucia) Cluster: 018 (breakdance)

Average of latent codes for each cluster: 

Average of latent codes for each cluster: 

original model fine-tuned model original model fine-tuned model original model fine-tuned model original model fine-tuned model

original model fine-tuned model original model fine-tuned model original model fine-tuned model original model fine-tuned model

Cluster: 019 (elephant) Cluster: 020 (soccerball) Cluster: 021 (bike-packing) Cluster: 022 (bear)

Cluster: 023 (flamingo) Cluster: 024 (pigs) Cluster: 0025 (gold-fish) Cluster: 026 (horse-jump-high)

Average of latent codes for each cluster: 

Average of latent codes for each cluster: 

fine-tuned model fine-tuned model fine-tuned model fine-tuned model

fine-tuned model fine-tuned model fine-tuned model fine-tuned model

original model original model original model original model

original model original model original model original model

Figure 12. Leaning a single autoencoder on all the frames of DAVIS dataset: We show different visual clusters (with purity of 1) when
doing k-means on the latent codes for all the frames of DAVIS dataset. We show the average image for each of these clusters using the single
model. We can further sharpen the average image by fine-tuning the model for a few iterations on the examples of specific cluster.
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Cluster: 028 (tractor-sand) Cluster: 039 (scooter-gray) Cluster: 053 (walking) Cluster: 061 (swing)

2D visualization of latent codes for a cluster:
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Figure 13. Impure clusters of DAVIS dataset can be further separated: We show different clusters with lower purity value. On a closer
observation, we find that concepts within most of these clusters can further separate out as shown by the 2D visualization of latent codes.

Cluster: 0001 (video: 1315) Cluster: 0006 (video: 0758) Cluster: 0013 (video: 0057) Cluster: 0024 (video: 1988)

Cluster: 0035 (video: 2133) Cluster: 0040 (video: 0845) Cluster: 0058 (video: 1629) Cluster: 0067 (video: 0391)

Cluster: 0105 (video: 0575) Cluster: 0107 (video: 1719) Cluster: 0108 (video: 2083) Cluster: 0117 (video: 1111)

Cluster: 0150 (video: 1367) Cluster: 0163 (video: 2080) Cluster: 0172 (video: 0081) Cluster: 0192 (video: 0365)

Figure 14. Pure clusters from the Penn Action dataset We visualize different clusters (purity of 1) obtained by simple k-means clustering
on the latent codes via an autoenoder trained on all the frames on Penn Dataset.
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Cluster: 0011 (situp) Cluster: 0017 (squat) Cluster: 0023 (bowl)

same person and background 
— different poses

same person and background 
— different clothes

two people bowling at same location
— five different videos

Cluster: 0027 (pullup)

Cluster: 0028 (baseball-swing) Cluster: 0037 (clean-and-jerk) Cluster: 0087 (squat)

same person and activity 
— two camera locations

same person and activity — 
five orientations

same activity and background  
— two people two people with same coach

Cluster: 0119 (tennis-serve)

two people playing tennis
— three videos

Figure 15. Interesting clusters from the Penn Action dataset We show different visual concepts that come from different videos but looks
visually similar, i.e., these are the clusters with video purity of less than 1 but action purity of 1. This happens because we have various
videos in Penn-Action dataset that has same person and background with slight variation. We show these variations with each cluster.

pixel correspondences across adjacent frames in Figure 23.
We show examples of instance mask propagation in Fig-
ure 24 and Figure 25.

C. Efficiently Transmitting a Video
We show examples of 10X super-resolution in Figure 26-

27 using this property for hi-res videos. The convolutional
autoencoder allows us to use videos of varying resolution.
Crucially, we get temporally smooth outputs without using
any temporal information for all the experiments.
Robust Space for Low-Res Inputs: One method to deal
with extremely low-res inputs is to use the reprojection prop-
erty iteratively. We also observe that one can robustify the
space of video-specific autoencoder by varying the resolu-
tion of input images at training time (the resolution of output
does not change). This added noise makes the model robust
to low-res noise and allows us to get hi-res outputs for a
extremely low-res input without iterative reprojection. Fig-

ure 28 shows an example of 32X super-resolution in one
iteration. We show example where we input 32× 32 Barack
Obama frames and yet be able to get 1024 × 1024 hi-res
output in a single iteration. We have not use this aspect in
any other example/evaluation shown in this paper. We leave
it to the future work for more exploration of this property.
Summary: We summarize different operations that we can
perform on a video using a single representation in Figure 29.
Finally, we show different application on various videos in
Figure 30.

D. More Discussion on Properties
Exploring the Manifold: Video-specific manifold allows
us to move in the 2D space and visualize the characterstics
of a video. We explore the video-specific manifolds in Fig-
ure 31 via two video instance specific autoencoders on: (I)
82 individual frames from a bear sequence; and (II) 55 in-
dividual frames from a surfing event. The latent codes of
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Cluster: 0004 Cluster: 0010 Cluster: 0019 Cluster: 0064 

Cluster: 0133 Cluster: 0166 Cluster: 0228 Cluster: 0331 

Figure 16. Impure clusters from the Penn Action dataset: We now show different clusters with lower purity value. Most of them either
capture the same action or are captured in similar background.

original points on a 2D plot for two sequences are visualized
using the bold squares. Each square represents an original
frame in the video and is shown using a different color. The
red line connecting the squares show the temporal sequence.
We show original images and reconstructed images for
four points: (a), (b), (c), and (d). We observe sharp recon-
struction. We then show various points on this manifold.
The color represents the closest original frame. We also
show ten random points around original points in the latent
space. We do not see artifacts for the bear sequence as we
move away from the original points due to highly correlated
frames. We see minor artifacts in the surfing event as we
move away from the original points as the frames are sparse
and spread-out.

Perturbation via Unknown Data-Distribution: Prior
work on audio conversion via exemplar autoencoders [12]
showed that one can input an unknown voice sample from
a different person (other than training sample) as input and
yet be able to get a consistent output. We study if this prop-
erty holds for the video-specific autoencoders. This prop-
erty could potentially allow us to establish correspondences
across the frames of two videos and do video retargeting [6].
We study this behaviour via three controlled experiments:

(1) multi-view videos: training a video-specific autoencoder
on one stationary camera from a multi-view sequence [7],
and test it on other cameras. The multi-view sequences via
stationary cameras allow us to study the role of slight per-
turbation. Figure 32 shows the analysis of perturbing data
distribution via multi-views. We observe that the points
are farther away from the original points (sequence used for
training) as we move away from them. This means we cannot
naively use a video-specific autoencoder for the inputs that
largely vary from original points; (2) semantically similar
videos: training a video-specific autoencoder on one base-
ball game and test it on other baseball games [60]. The game
videos allow us to study the role of semantic perturbation.
Figure 33 shows the reprojection of various semanitically
similar events. We observe that the points move farther as
the input becomes less similar. We also observe that we
can iteratively bring the points close to the original points
by iterative reprojection. After a few iterations, we observe
that two semantically similar events align with each other as
shown in Figure 34. We also get temporally coherent out-
puts showing alignment between two videos. This property
allows us to establish correspondences between two semanti-
cally similar videos and do video retargeting; and (3) finally
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Figure 17. Stitching Far-Apart Frames in a Video: We naively concatenate the spread-out frames in a video and feed it through the
video-specific autoencoder. The learned model generates a seamless output. The top row in each example shows concatenated frames. The
bottom row shows seamless output of video-specific autoencoders.

using completely different videos from DAVIS dataset [39]
(for e.g., a model trained on bear sequence and tested it with
a surfing event). The completely different videos allow us
to see if the autoencoder can learn a reasonable pattern be-
tween two videos (for e.g., movement of objects in a similar

direction) or leads to indecipherable random projections. We
show two examples in Figure 35. In the first example, we
train a video-specific autoencoder using a cow sequence. We
input the frames of a surfing event to this trained model. The
first iteration yields a noisy outputs and far-away from the
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Figure 18. More examples of stitching far-apart frames in a video: We show more examples of stitching for different videos and observe
continuous seamless outputs.

original points in the video-specific manifold. We reproject
the input iteratively multiple times, thereby bringing it close
to the original points. We show the results of 51st iteration.
We also show a few examples showing the mapping from the
frames of surfing event and the corresponding reconstructed
frames. The outputs are noisy and does not have a temporal
coherence. We observe similar behavior in other example.
Negative Influence of Data Augmentation: We observe
an interesting phenomenon in the surfing example shown
in Figure 38. The direction of final surfing output is hori-
zontally flipped. We realize that we train the video-specific
autoencoder using random horizontal flip that is a standard
data augmentation strategy for training deep neural networks.
However, when training a model using random horizontal
flips creates distinct video-specific manifolds for both origi-
nal and flipped samples as shown in the top-row of Figure 39.
We observe that a model trained with data augmentation con-
fuses a noisy input as to which direction it should move to
obtain a hi-res output (shown by the direction of two points
in the plot). However, we are able to overcome this issue
when a model is trained without random horizontal flips.
We also see sharper results when using the model trained
without horizontal flips. We observe that autoencoder maps
noisy input to the manifold spanned by flipped samples. This
is a reason why we see output similar to flipped samples.
Additionally, the output of the model trained with horizontal
flips suffer averaging artifacts whereas we get good sharp
results when not using it. This behaviour specifically holds
when the input is quite noisy (e.g. 4× 8 resolution).
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this, we mirror-pad the image to the target size and feed it to the video-specific autoencoder. We also show the results of zero-padding
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18



Figure 21. Spatial Editing (Removal): Given a image, a user can do editing by copy-pasting a patch from surroundings to the target
location and feed it to the video-specific autoencoder. We show examples (input-output pairs ) of spatial editing for stretched out images.
The video-specific autoencoder yields a continuous and consistent spatial outputs as shown in the various examples here.

[11] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Learnable gated temporal shift module for deep video
inpainting. In BMVC, 2019. 1

[12] Kangle Deng, Aayush Bansal, and Deva Ramanan. Unsuper-
vised audiovisual synthesis via exemplar autoencoders. In
ICLR, 2021. 14

[13] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Temporal cycle-
consistency learning. In CVPR, 2019. 1

[14] Dave Epstein, Boyuan Chen, and Carl Vondrick. Oops! pre-
dicting unintentional action in video. In CVPR, 2020. 1

[15] Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkel-
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Figure 23. Correspondences across Adjacent Frames We show correspondences established in the adjacent frames of a video using
pixel-level codes. For the sake of visualization, we select 256 random regions on the moving objects in a scene.
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Figure 24. Instance Mask Propagation: Given the first labeled frame, we propagate the instance labels using the pixel codes. We show
here the labels in the first frame on the left. We show the propagated labels from the first frame to the middle and last frame of the video.
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Figure 25. Instance Mask Propagation: Given the first labeled frame, we propagate the instance labels using the pixel codes. We show
here the labels in the first frame on the left. We show the propagated labels from the first frame to the middle and last frame of the video.

23



(a) input (b) output

Figure 26. 10X Spatial Super Resolution: We train video-specific autoencoders using original videos. The reprojection property allows us
to get hi-res outputs even when inputting a low-res sample at test time.
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(a) an autoencoder trained on individual frames from an Obama video

(c) temporal super-resolution
interpolated frames

latent code

input reconstruction

encoder decoder

(d) 10x spatial super-resolution
input: 96x96 zoom-in view

(e) pixel correspondences without tracking

(f) spatial editing on a given frame (g) creating temporal stream
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Figure 29. What can we do with a video given a single video representation? (a) We train a video-specific autoencoder on individual
frames from a target video (here, 300 unordered 1024× 1024 frames). (b) We use Principal Component Analysis (PCA) to visualize latent
codes of the frames of this video in a 2D space. This 2D visualization shows two different data distributions within the video. We visualize
the clusters within the video and average of latent codes in these two clusters. (c) We interpolate the latent codes of adjacent frames (and
decode them) for temporal super-resolution. (d) By linearly upsampling low-res 96× 96 image frames to 1024× 1024 blurry inputs and
passing them through the autoencoder, we can “project” such noisy inputs into the high-res-video-specific manifold, resulting in high quality
10X super-resolution, even on subsequent video frames not used for training. (e) We use hypercolumn features from the encoder and can do
pixel-level correspondences between two frames in a video. (f) We can also do spatial editing on a given frame of video. Shown here is an
input frame where eyes are closed. We copy open eyes from another frame and close mouth from a yet another frame, and pass it through
the autoencoder to get a consistent output. (g) We can further create temporal stream between the original frame and edited frame by
interpolating the latent code.
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(e) 2D visualization of latent codes

(g) aligning two videos
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(b) 10x spatial super-resolution (c) object removal
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(f) average image of a video

Figure 30. We demonstrate a remarkable number of video processing tasks enabled by a simple video-specific representation: an image
autoencoder trained on frames from a target video. (a) By interpolating latent codes of adjacent frames (and decoding them), one can
perform temporal super-resolution. (b) By linearly upsampling low-res 96× 96 image frames to 1024× 1024 blurry inputs and passing
them through the autoencoder, we can project such blurry inputs into the high-res-video-specific manifold, resulting in high quality 10X
super-resolution, even on subsequent video frames not used for training. (c) Manifold projection can also be used to remove objects marked
with a bounding box. (d) Hypercolumn features of the autoencoder can be used to establish per-pixel correspondences across frames of a
video via feature matching. (e) Multidimensional scaling of latent codes (via 2D Principal Component Analysis) allows for “at-a-glance”
interactive video exploration; one can summarize visual modes and discover repeated frames that look similar but are temporally distant.
(f) We can summarize videos by decoding the average latent codes (of all the frames in a video), which compares favorably to a naive
per-pixel average image. (g) Manifold projection allow us to align two semantically similar videos and retarget from one to another (here,
two baseball games).
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Figure 31. Exploring the Manifold: We train two video instance specific autoencoders on: (I) 82 individual frames from a bear sequence;
and (II) 55 individual frames from a surfing event. We visualize the latent codes of original points on a 2D plot for two sequences using the
bold squares. Each square represents an original frame in the video and is shown using a different color. The red line connecting the squares
show the temporal sequence. We show original images and reconstructed images for four points: (a), (b), (c), and (d). We show random
points on manifold M colored by the closest original frame. We visualize image reconstruction of a random subset of 10 in the bottom row.
Note that latent coordinates even far away from the original frames tend to produce high-quality image reconstructions.
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Figure 32. Perturbation via Multi-Views: We train a video-specific autoencoder with a sequence captured via a stationary camera (a
frame of the sequence as shown in the red box). The 2D visualization of this sequence is shown with the red points in the visualization.
Once trained, we take inputs from multi-views (shown by views from other colors). We observe that the points move farther away from the
red points as we move away from the original camera/sequence that was used for training the video-specific autoencoder. For e.g., magenta
points are close to the red points because the frames from two sequences look more similar than the frames representing cyan points.
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Figure 33. Perturbation via Semantically Similar Events: We train a video-specific autoencoder with one baseball game video (a frame
of the sequence is shown in the red box). The 2D visualization of this sequence is shown with the red points in the 2D visualization of latent
codes. Once trained, we take inputs from other baseball games (shown by views marked with other colors). We observe that the points move
farther from the red points as the inputs become less similar to the original sequence.
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Figure 34. Iterative Reprojection of Semantically Similar Events: We train a video-specific autoencoder with one baseball game video.
The 2D visualization of this sequence is shown with the red points. Once trained, we take inputs from other another baseball game (shown
by blue points). We iteratively reproject the input and observe that one can align two semantically similar videos (shown by magenta points).
We also show a few example inputs from the “unknown” sequence and the reconstructed images (after 25th iteration) from the autoencoder.
We observe temporally coherent outputs.
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Figure 35. Extreme Perturbation via Random Videos: We train a video-specific autoencoder using a cow sequence. The 2D visualization
of this sequence is shown with the red points. Once trained, we take inputs from a completely different video. For e.g., a surfing event in top
example. The blue points show the projection of this video in the first iteration, and yields noisy output. Iteratively projecting these inputs
bring them close to the original points. Here we show the results of 51st iteration using magenta points. We also show a few example inputs
from the sequence and the reconstructed images (after 51st iteration). The outputs are noisy and does not have a temporal coherence.
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Figure 36. Frame Correspondence across Videos: Given a video-specific manifold for a baseball video (red points), we iteratively
reproject the unknown video (blue points) to the manifold (shown using magenta points). This allow us to get corresponding frames in two
videos via cosine similarity. We also show reconstructed images from the frames of unknown video using the video-specific autoencoder.
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Figure 37. Failure Case of Frame Correspondence: We observe mapping (blue points to magenta points) collapse to a few similar points.
This means there are no guarantees that we can align two videos using iterative reprojection property. However, one can see the success or
failure of frame correspondences via 2D visualization of the latent codes.
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Figure 38. Iterative Improvement via Reprojection Property: We input a low-res 4× 8 image and iteratively improve the quality of
outputs. The reprojection property allows us to move towards a good solution with every iteration. At the end of the tenth iteration, we
observe a sharp but plausible hi-res (256× 512) output. However, it may not be an actual solution.
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Figure 39. Influence of random horizontal flips during training on video manifold: We study the influence of random horizontal flips
when training a video-specific autoencoder. We train two autoencoder, one with random horizontal flips and other without horizontal flips.
The video manifold of an autoencoder with horizontal flips learns separate spaces for original and flipped samples. This is, however, not true
for the model trained without random horizontal flips. We input a low-res 4× 8 image and iteratively improve the quality of outputs. Due to
two separate spaces in the first model, the autoencoder is confused in which direction to move the noisy input sample and thereby leads to
slow movement. The other autoencoder is, however, able to move quickly towards a good solution. We observe sharp 256× 512 output at
the end of tenth iteration.
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