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Abstract. We present Neural Pixel Composition (NPC), a novel ap-
proach for continuous 3D-4D view synthesis given only a discrete set of
multi-view observations as input. Existing state-of-the-art approaches
require dense multi-view supervision and an extensive computational
budget. The proposed formulation reliably operates on sparse and wide-
baseline multi-view imagery and can be trained efficiently within a few
seconds to 10 minutes for hi-res (12MP) content, i.e., 200-400× faster
convergence than existing methods. Crucial to our approach are two core
novelties: 1) a representation of a pixel that contains color and depth in-
formation accumulated from multi-views for a particular location and
time along a line of sight, and 2) a multi-layer perceptron (MLP) that
enables the composition of this rich information provided for a pixel
location to obtain the final color output. We experiment with a large
variety of multi-view sequences, compare to existing approaches, and
achieve better results in diverse and challenging settings. Finally, our ap-
proach enables dense 3D reconstruction from sparse multi-views, where
COLMAP, a state-of-the-art 3D reconstruction approach, struggles.

Keywords: 3D View Synthesis, 4D Visualization, 3D Reconstruction.

1 Introduction

Novel views can be readily generated if we have access to the underlying 6D
plenoptic function R(θ,d, τ) [1,23] of the scene that models the radiance incident
from direction θ ∈ R2 to a camera placed at position d ∈ R3 at time τ . Currently,
no approach exists that can automatically reconstruct an efficient space- and-
time representation of the plenoptic function given only a (potentially sparse) set
of multi-view measurements of the scene as input. The core idea of image-based
rendering [22,37] is to generate novel views based on re-projected information
from a set of calibrated source views. This re-projection requires a high-quality
estimate of the scene’s geometry and is only correct for Lambertian materials,
since the appearance of specular surfaces is highly view-dependent. Building a
dense 3D volume from multi-view inputs that provides correct 3D information
for each pixel location is a non-trivial task.

Recent approaches such as Neural Radiance Fields (NeRF) [27] and Neu-
ral Volumes (NV) [20] attempt to create rich 3D information along a ray of
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(a) 30 views (b) 25 views (c) 20 views (d) 9 views

(e) Novel hi-res views synthesized from multi-view facial capture

(f) Novel hi-res views synthesized for unseen expressions and unseen subjects

Fig. 1. We show novel views synthesized using our approach for a wide variety of
multi-view sequences capturing static and dynamic environments with a varying num-
ber of views. Our approach nicely captures fine details, specular surfaces, as well as
reflections as shown in (a)-(c). (d) Our approach can operate on sparse and wide-
baseline multi-view images with unbounded depth, and can be trained efficiently. (e)
We also show novel views capturing hi-res facial and hair details. The model is trained
for a specific time instant for a given subject. This learned model (f) generalizes to
unseen expressions and unseen subjects. Best viewed in electronic format.

light by sampling 3D points at regular intervals given a min-max bound. Ra-
diance fields are highly flexible 3D scene representations that enables them
to represent a large variety of scenes including semi-transparent objects. The
price to be paid for this flexibility is that current approaches are restricted
to datasets that provide dense 3D observations [20,27,31,32,33,48], can only
model bounded scenes [5,20,25,27,43,47], and require intensive computational re-
sources [20,27,48]. In contrast, we introduce a multi-view composition approach
that combines the insights from image-based rendering [38] with the power of
neural rendering [41] by learning how to best aggregate information from differ-
ent views given only imperfect depth estimates as input. Figure 1 shows novel
views synthesized using our approach for different multi-view sequences. Our
approach can operate on sparse and wide-baseline multi-view imagery (assum-
ing known camera parameters) and requires limited computational resources for
operation. The model learned on a single time-instant for one subject (Fig 1-(e))
generalizes to unseen time instances and unseen subjects without any fine-tuning
(Fig 1-(f)).



Neural Pixel Composition (NPC) 3

MLP3D from multi-views
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(x, y)

Fig. 2. Color for a pixel location: Our goal is to estimate the color for every pixel
location (x, y) for a time τ given camera extrinsic parameters (rx, ry, rz, tx, ty, tz). We
collect a rich 3D descriptor consisting of color (c) and depth (d) information from
multiple stereo-pairs using an off-the-shelf disparity estimation module [46]. We learn
a multi-layer perceptron (MLP) to compose color and depth. The final output color c̄
is obtained by a simple dot-product of a blending weight α (output of MLP) and the
corresponding color samples. γ is a regressed color correction term per pixel.

We accumulate rich 3D information (color and depth) for a pixel location
using an off-the-shelf disparity estimation approach [46] given multiple stereo
pairs as input. We then learn a small multi-layer perceptron (MLP) for a given
multi-view sequence that inputs the per-pixel information at a given camera
position and outputs color at the location. Figure 2 illustrates the components of
our approach. We train an MLP for a sequence by sampling random pixels given
multi-views. In our experiments, we observe that a simple 5-layer perceptron
is sufficient to generate high-quality results. Our model roughly requires 1 GB
of GPU memory and can be trained within a few seconds to 10 minutes from
scratch for a hi-res multi-view sequence. The trained model allows us to perform
a single forward-pass at test time for each pixel location in a target camera
view. A single forward pass per pixel is more efficient than radiance field based
approaches that require hundreds of samples along each ray. Finally, the alpha
values (αi) allow us to perform dense 3D reconstruction of the scene by selecting
appropriate depth values at a given location.

In summary, our contributions are:

– A surprisingly simple, yet effective approach for view synthesis from cali-
brated multi-view images that works with limited computational resources
on diverse multi-view sequences.

– Our approach offers a natural extension to the 4D view synthesis problem.
Our approach can also generalize to unseen time instances.

– Our approach is able to obtain dense 3D reconstruction on challenging in-
the-wild scenes.
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2 Related Work

Our novel view synthesis work is closely related to several research domains,
such as classical 3D reconstruction and plenoptic modeling, as well as neural
rendering for static and dynamic scenes. In the following, we cover the most
related approaches. For a detailed discussion of neural rendering approaches, we
refer to the surveys [38,41,42].
Plenoptic Modeling and NeRF: Plenoptic function [1,23] does not require
geometric modeling. A plenoptic or a light-field camera [10,18,28] captures all
possible rays of light (in a bounded scene), which in turns enables the synthe-
sis of a new view via a per-ray look-up. Recent approaches such as NeRF [27]
and follow-up work [4,45,48] employ a multi-layer perceptron (MLP) that infers
color and opacity values at 3D locations along each camera ray. These color
and opacity values along the ray are then being integrated to obtain the final
pixel color. This requires: 1) dense multi-view inputs [5,47]; 2) perfect camera
parameters [14,19]; and 3) a min-max bound to sample 3D points along a ray
of light [32,48]. We observe degenerate outputs if all three conditions are not
met (as shown in Figure 3). Different approaches either use prior knowledge
or a large number of multi-view sequences [5,43,47], additional geometric opti-
mization [14,19], or large capacity models to separately capture foreground and
background [48]. In this work, we use an off-the-shelf disparity estimation mod-
ule [46] that allows us to accumulate 3D information for a given pixel location.
A simple MLP provides us with blending parameters that enable the composi-
tion of color information. This allows us to overcome the above-mentioned three
challenges albeit using limited computational resources to train/test the model.
3D Reconstruction and View Synthesis: Another approach to solve the
problem is to obtain dense 3D reconstruction from the input images [11] and
project 3D points to the target view. There has been immense progress in densely
reconstructing the static world from multi-view imagery [8,15], internet scale
photos [2,12,35,40], and videos [36]. Synthesizing a novel view from accumulated
3D point clouds may not be consistent due to varying illumination, specular
material, and different cameras used for the capture of the various viewpoints.
Riegler et al. [32,33] use a neural network to obtain consistent visuals given a
dense 3D reconstruction. This works well for dense multi-view observations [17].
However, 3D reconstruction is sparse given wide-baseline views or scenes with
specular surfaces. This is highlighted in Figure 3, which shows 3D reconstruction
results of COLMAP [35,36] using one of the sequences. Recently, DS-NeRF [6]
use sparse 3D points from COLMAP along with NeRF to learn better and faster
view synthesis. As shown in Figure 3, adding explicit depth information enables
DS-NeRF to capture scene structure but still struggles with details.
Layered Depth and Multi-Plane Images: Closely related to our work are
layered depth images [24,26,29,30,37,50] that learn an alpha composition for
multi-plane images at discrete depth positions. In this work, we did not restrict
our approach to 2D planes or specific depth locations. Instead, we learn a rep-
resentation for a pixel at arbitrary depth locations. A pixel-wise representation
not only allows us to interpolate, but also to extrapolate, and obtain dense 3D
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Ground TruthOursDS-NeRFNeRF

COLMAP: Dense 3D reconstruction

Fig. 3. View synthesis given sparse and spread-out multi-views: Our approach
allows us to operate on sparse multi-views of unbounded scenes [3]. We show novel view
points for a fixed time instant for three unbounded scenes. Prior approaches such as
NeRF [27] and DS-NeRF [6] lead to degenerate outputs on these sequences. We also
show the 3D reconstruction using COLMAP [36,35] for the sequence in the top-row. We
observe that dense 3D reconstruction from sparse views is non-trivial for COLMAP.

reconstruction results. Since we have a pixel-wise representation, we are able to
generate 12MP resolution images without any modifications of our approach.
Prior work has demonstrated results on a maximum of 2MP resolution content.

4D View Synthesis:Most approaches are restricted to 3D view synthesis [26,27]
and would require drastic modifications [7,31] to be applied to the 4D view-
synthesis problem. Lombardi et al. [21] employ a mixture of animated volumetric
primitives to model the dynamic appearance of human heads from dense multi-
view observations. Open4D [3] requires foreground and background modeling for
4D visualization. Our work does not require major modifications to extend to
4D view-synthesis. In addition, we do not require explicit foreground-background
modeling for 4D view synthesis. We demonstrate our approach on the challeng-
ing Open4D dataset [3] where the minimum distance between two cameras is
50cm. Our composition model trained on a single time instant also enables us
to do 4D visualization for unseen time instances. Finally, the model learned for
view synthesis enable dense 3D reconstruction on multi-view content. To our
knowledge, no prior work has demonstrated these results for 3D-4D multi-view
view synthesis.
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(c) Neural Composition(b) Naive Composition++(a) Naive Composition

Fig. 4. Naive Composition vs. Neural Composition: The baseline naively uses
multiple stereo-pairs to generate the final output (Naive Composition). (a) For each
pixel location, we select the color value for the closest depth location. (b) We also take
the average of color values for the three closest depth locations (Naive Composi-
tion++). (c) We contrast these results with Neural Composition which uses an
MLP to compose the color values. We observe that the MLP nicely composes the color
values despite noisy depth estimates and fills the missing regions.

3 Method

We are given M multi-view images with camera parameters (intrinsics and ex-
trinsics) as input. Our goal is to learn a function, f , that inputs pixel informa-
tion (p), p ∈ RNp , and outputs color (c̄ ∈ R3) at that location, i.e., f : p → c̄.
Learning such a function is challenging since we live in a 3D-4D world and im-
ages provide only 2D measurements. We present two crucial components: 1) a
representation of a pixel that contains relevant multi-view information for high-
fidelity view synthesis; and 2) a multi-layer perceptron (MLP) that inputs the
pixel information and outputs the color.
Overview: We input a pixel location (x, y) given corresponding camera param-
eters (rx, ry, rz, tx, ty, tz) at time, τ , along with an array of possible 3D points
along the line of sight. The ith location of this array contains depth (di) and
color (ci). The MLP outputs alpha (αi) values for the ith location that allow us
to obtain the final color at (x, y). The MLP also outputs gamma, γ ∈ R3, which
is a correction term learned by the model. We get the final color at pixel location
(x, y) as: c̄ = γ +

∑N
i=1 αici, where N is the number of points in the array.

We describe our representation of a pixel in Sec. 3.1 and the MLP in Sec. 3.2.

3.1 Representation of a Pixel

Given a pixel location (x, y) for a camera position (rx, ry, rz, tx, ty, tz), our goal
is to collect dense 3D information that contains depth and color information at
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OursNeRF

Fig. 5. High-Resolution 12 MP View Synthesis: Our approach allows us to cap-
ture small details better than NeRF on a novel held-out scene. We train the NeRF
model for 2M iterations that take 64 hours of training on a single NVIDIA V100 GPU.
Ours is trained for 10 minutes. Best viewed in electronic format.

all possible 3D points along a line of sight. We obtain 3D points via two-view
geometry [11] by forming

(
M
2

)
stereo-pairs. The estimated disparity between a

stereo pair provides the depth for the 3D point locations. Multiple stereo pairs
allow us to densely populate 3D points along the rays.

Color and Depth Array: We use multiple stereo pairs to build an array of depth
(d) and color (c) for a pixel. We store the values in order of increasing depth,
i.e., di+1 ≥ di. The array is similar to a ray of light that travels in a particular
direction connecting the 3D points. We limit the number of 3D points to be N .
If there are less than N depth observations, we set di = 0 and ci = (0, 0, 0). If
there are more than N observation, we clip to the closest N 3D points.

Uncertainty Array: In this work, we use an off-the-shelf disparity estimation
module from Yang et al. [46]. This approach provides an estimate of uncertainty
(entropy) for each prediction. We also keep an array of uncertainty values (H)
of equal size as the depth array (obtained from disparity and camera parame-
ters), s.t., Hi ∈ [0, 1], where a higher value represents higher uncertainty. The
uncertainty allow us to suppress noise or uncertain 3D points.

Encoding Spatial Information: For each pixel, we concatenate its spatial location,
i.e., (x, y) location and camera position (rx, ry, rz, tx, ty, tz). We employ high-
frequency positional encoding [26] to represent spatial information of a pixel for
a given camera position. We normalize the pixel coordinates, s.t., x ∈ [−1, 1]
and y ∈ [−1, 1].
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Incorporating Temporal Information: Our approach enables a natural extension
to incorporate temporal information. Given a temporal sequence with T frames,
we represent each time instant as a Gaussian distribution with peak at the frame
τ . We concatenate the color, depth, and uncertainty array alongside the spatial
and temporal information in a single Np-dimensional array, where Np is sum of
the dimensions of each term. We input this array to the MLP to compute the
color output at the pixel location.

3.2 Neural Composition via Multi-Layer Perceptron (MLP)

Our goal is to output blending values α that enable us to take the appropriate
linear combination of color values in the color-array. A naive way is to directly
use the output of the last layer of the MLP as an alpha array and compute a
dot product with the color-array:

f(x, y, τ, rx, ry, rz, tx, ty, tz, c,d,H) = w. (1)

While this is reasonable, it assumes that the MLP will implicitly understand
the relationship between color (c), depth (d), and uncertainty (H). This is chal-
lenging to learn. In this work, we observe that explicitly using the depth and
uncertainty with the output of the MLP (w) enables better view synthesis. We,
therefore, define:

αi =
(1− Hi)e

−(widi−µ)2

∑N
j=1(1− Hj)e−(wjdj−µ)2

, (2)

where µ = 1
N

∑N
j=1 wjdj . The Gaussian distribution forces the model to select

color values belonging to depth location that are: 1) closest to the average depth
value; and 2) are confident and less noisy. We employ these alpha values together
with the original color array to predict the final values (c̄):

c̄ =

N∑

i=1

αici + γ, (3)

where γ is an additional correction term that helps us to obtain sharp outputs.
Note that the fifth layer of the MLP outputs α and γ values.

Multi-Layer Perceptron: We employ a 5-layer perceptron. Each linear function
has 256 activations followed by a non-linear ReLU activation function. We train
the MLP in a self-supervised manner using a photometric ℓ1-loss:

min
f

L =

m∑

k=1

∣∣∣∣ck − c̄k
∣∣∣∣
1
, (4)

where ck and c̄k are the ground truth color and predicted color respectively
for the kth pixel, and m is the number of randomly sampled pixels from the



Neural Pixel Composition (NPC) 9

M images. We train the MLP from scratch using the Adam optimizer [16]. We
randomly sample 4 images, and sample 256 pixels from each image for every
forward/backward pass. The learning rate is kept constant at 0.0002 for the first
5 epochs and is then linearly decayed to zero over next 5 epochs. We observe
that composition model converges around in a few seconds of training on a single
GPU with 1 GB GPU memory. Figure 5 contrasts our results with NeRF on one
such dense multi-view sequence.
Naive Composition: One can also naively use the pixel representation to gen-
erate the final output by selecting the color value for the closest depth location.
A slightly nuanced version is to take average of color values for three closest
depth location (Naive Composition++). We use this naive composition for
comparisons in our work. Figure 4 shows the importance of using neural compo-
sition via MLP over naive composition. We believe it is an importance baseline
for view synthesis as this simple nearest-neighbor based method generates results
without any training.

4 3D Multi-View View Synthesis

We study various aspects of 3D view synthesis using our approach: (1) synthe-
sizing novel views given sparse and unconstrained multi-views (Sec. 4.1); (2)
synthesizing hi-res 12MP content (Sec. 4.2); and (3) scenes with unbounded
depth and influence of the number of views (Sec. 4.3). We then demonstrate
our approach on hi-resolution studio capture in Sec. 4.4 and show that our ap-
proach can generalize to unseen subjects and unknown time instances from a
single time-instant. We study convergence in Sec. 4.5 where we observe that our
model gets close to convergence within a few seconds of learning. Finally, there
are more analysis in Appendix C.

4.1 Sparse and Unconstrained Multi-Views

We use 24 sequences of sparse and unconstrained real-world samples from the
Open4D dataset [3]. Open4D consists of temporal sequences. We use certain
time instants for 3D view synthesis. The minimum distance between two ad-
jacent cameras is 50cm in these sequences. We contrast our approach with
NeRF [27]. We also study DS-NeRF [6], which additionally employs sparse 3D
point clouds from COLMAP for training NeRF. DS-NeRF has shown promis-
ing results given the sparse views from LLFF dataset [26]. Both approaches are
trained for 200, 000 iterations (roughly 420 minutes) per sequence on a NVIDIA
V100 GPU. Table 1 compares the performance of different methods on held-out
views from these sequences using PSNR, SSIM, and LPIPS (AlexNet) [49]. In
this work, we observe that these three evaluation criteria are not self-sufficient
in determining the relative ranking of different methods. While PSNR and SSIM
may favor smooth or blurry results [49], LPIPS may ignore the structural con-
sistency in images. We posit that it is important to look at all three criteria
and not one. Figure 3 shows the qualitative performance of our approach on
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these challenging sequences. We observe degenerate results using NeRF on these
sequences. DS-NeRF also results in degenerate outputs most of the times except
for the scenes with bounded depth. Our approach is able to generate high-quality
results (with details such as faces, hair, dress, etc.) in this setting both qualita-
tively and quantitatively. Total time taken to process (pre-processing multi-view
content and training the composition model) a sequence is less than 10 minutes.
We also observe that a naive pixel composition can also yield meaningful re-
sults better than prior work. However, we obtain better pixel composition using
MLPs. The details of these sequences are available in Appendix A.1.

24 sequences PSNR↑ SSIM↑ LPIPS [49] ↓

LLFF [26] 15.187 ± 2.166 0.384 ± 0.082 0.602 ± 0.090

NeRF [27] 13.693 ± 2.050 0.317 ± 0.094 0.713 ± 0.089

DS-NeRF [6] . 14.531 ± 2.603 0.316 ± 0.099 0.757 ± 0.040

DS-NeRF** [6] . 15.346 ± 2.276 0.389 ± 0.076 0.716 ± 0.048

Naive Composition 15.480 ± 1.928 0.372 ± 0.061 0.665 ± 0.065

Naive Composition++ 16.244 ± 2.186 0.442 ± 0.074 0.616 ± 0.063

Ours 17.946 ± 1.471 0.562 ± 0.077 0.534 ± 0.061

Table 1. Sparse and Unconstrained Multi-Views: We evaluate on the 24 sparse
and unconstrained multi-view sequences of the Open4D dataset [3]. We train NeRF [27]
and DS-NeRF [6] models for each sequence. DS-NeRF [6] employs additional depth
along with NeRF. We trained two versions of DS-NeRF. One where we use the same
model as NeRF with additional depth supervision. The second version is DS-NeRF**
with tuned hyperparameters. We also use the off-the-shelf LLFF model. We observe
degenerate outputs using LLFF, NeRF and DS-NeRF, especially for unbounded scenes.
However, our approach is able to reliably generate novel views in twenty times less time.
Training a NeRF/DS-NeRF model takes roughly 420 minutes per sequence whereas
our approach take 10 minutes (including pre-processing multi-view content). We also
generate results using naive composition and obtain better results than prior work. We
observe that the MLP allows us to do better composition than naive composition.

4.2 High-Resolution (12MP) View Synthesis

We use twelve high-resolution (4032×3024) multi-view sequences from the LLFF
dataset [26] that contain challenging specular surfaces. In this setting, we train
NeRF [27] on these sequences for 2, 000, 000 iterations which take approximately
64 hours on a single NVIDIA V100 GPU (10, 000 iterations take 20 minutes).
Performance saturates at 1M iterations after 32 hours of training. We also show
the performance for vanilla NeRF that is trained for 200, 000 iterations and
takes 400 − 420 minutes to train. We train our model for 10 epochs, which
takes around 10 minutes on a single GPU and only 1GB GPU of memory. We
estimate disparity [46] for multiple stereo pairs at one-fourth resolution for these
sequences. Disparity estimation using the off-the-shelf model takes less than 5
minutes per sequence on a single GPU. Table 2 contrasts the performance of
NeRF models at different intervals of training using PSNR, SSIM, and LPIPS
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(AlexNet). We compute the average of per-frame statistics as the number of
samples in the test set for these 12 sequences are roughly the same. We once again
observe that it is crucial to include all three evaluation criteria. Figure 6 shows
the results of NeRF at different intervals of time. We observe that the NeRF
model improves over time and captures sharp results as suggested by LPIPS.
Our method enables sharper outputs as compared to NeRF. Interestingly, NeRF
does not capture details even for training samples when trained sufficiently long
(64 hours) which suggests that it is non-trivial to capture details using NeRF on
held-out samples. The qualitative and quantitative analysis suggest that we can
efficiently generate results on 12MP images without drastically increasing the
computational resources. We also show the performance of naive composition
to generate the final outputs. We observe that MLPs allow us to obtain better
results. The details of these sequences are available in Appendix A.2.

We also vary the number of stereo pairs (K) to synthesize the target view.
We observe that we can get better results with a few stereo pairs than using all
pairs. Synthesizing a new view for a dense multi-view sequence can be achieved
by looking at the local neighborhood of the target location instead of using all
the views. Local neighborhood is determined based on position in world space,
i.e., we use stereo-pairs corresponding to the closest camera and then next and
so on, unless we have K samples. This allows us to speed-up training and testing.

Shiny Dataset: We use 8 multi-view sequences from the Shiny Dataset [44]
that consists of multi-views captured for specular surfaces. The resolution of
6 sequences (less than 60 samples in each) in this dataset is 4032 × 3024, and
the remaining two (cd and labs have more than 300 samples) have resolution
1920×1080. We train NeRF on the original resolution of these sequences for 2M
iterations (64 hours per GPU). We contrast the performance with our approach
that is trained for 10 epochs and 50 epochs. Table 3 shows the performance
of different methods. We follow the evaluation criteria (average of per-sequence
PSNR, multi-channel SSIM, LPIPS1) from NeX [44]. We also add the results
generated by NeX [44] that synthesizes on one-fourth resolution for these se-
quences. We do a simple 4×-upsampling of their results to target resolution for
an apples-to-apples comparison. Our model trained for 10 minutes achieves re-
sults close to the best performance. Figure 7 contrasts our method with NeX.
We observe small details are better captured by our method.

Standard LLFF Sequences: We quantitatively evaluate our approach on
8 forward-facing real-world multi-view sequences [27] in Table 4. We use the
original hi-res (4032 × 3024) undistorted images provided by Wizadwongsa et
al. [44]. We once again train NeRF models for these hi-res sequences for 2M
iterations (64 hours per GPU). Training the model for long allows us to get better
performing NeRF models for these sequences. We follow the evaluation criteria
(average of per-sequence PSNR, multi-channel SSIM, LPIPS) from NeX [44].
We also add the results reported by NeX [44]. These results were generated on
one-fourth resolution. We upsample them to the desired resolution. We report

1 We, however, use LPIPS via AlexNet (alex) instead of VGG-Net (vgg) to fit 12MP
images on a single GPU.



12 Bansal and Zollhoefer

12 sequences PSNR↑ SSIM↑ LPIPS ↓

NeRF [27]

2 hours 21.151 ± 2.783 0.577 ± 0.157 0.662 ± 0.099

4 hours 21.469 ± 2.881 0.588 ± 0.153 0.628 ± 0.096

vanilla 21.625 ± 2.933 0.596 ± 0.150 0.605 ± 0.092

8 hours 21.674 ± 2.958 0.598 ± 0.149 0.599 ± 0.091

16 hours 21.734 ± 2.981 0.602 ± 0.148 0.586 ± 0.088

32 hours 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

64 hours . 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Naive Composition 16.008 ± 2.315 0.415 ± 0.142 0.427 ± 0.068

Naive Composition++ 17.022 ± 2.483 0.460 ± 0.144 0.406 ± 0.066

Ours (10 minutes)

K = 50, N = 50 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075

K = 100, N = 100 20.953 ± 2.805 0.598 ± 0.136 0.460 ± 0.078

K = 200, N = 200 20.783 ± 2.749 0.593 ± 0.135 0.494 ± 0.081

K = ALL,N = 200* 20.712 ± 2.656 0.591 ± 0.134 0.497 ± 0.077

Ours (50 minutes)

K = 50, N = 50 20.777 ± 2.809 0.591 ± 0.137 0.416 ± 0.075

K = 100, N = 100 21.006 ± 2.869 0.597 ± 0.136 0.448 ± 0.080

K = 200, N = 200 20.924 ± 2.847 0.592 ± 0.134 0.477 ± 0.082

K = ALL,N = 200* 20.825 ± 2.708 0.589 ± 0.132 0.480 ± 0.079

Ours (250 minutes)

K = 50, N = 50 20.582 ± 2.751 0.585 ± 0.135 0.409 ± 0.076

K = 100, N = 100 20.916 ± 2.874 0.593 ± 0.135 0.433 ± 0.078

K = 200, N = 200 20.640 ± 3.234 0.582 ± 0.139 0.474 ± 0.095

K = ALL,N = 200* 20.548 ± 3.104 0.580 ± 0.137 0.478 ± 0.092

Table 2. Hi-Res (12MP) View Synthesis: We evaluate on 12 sequences from
LLFF containing specular surfaces on original 4032 × 3024 resolution. The details of
these sequences are available in Appendix A.2. We contrast the performance of our
approach with different intervals of training a NeRF model. Performance saturates at
1M iterations after 32 hours of training. Our composition model converges quickly in a
few minutes. Here, we show the results of our composition model trained for 10 epochs
that takes around 10 minutes, 50 epochs that takes less than 1 hour. Training our model
require 1 GB of GPU memory for training. We also show the results when the model
is trained for 250 epochs. For each setting, we vary the number of stereo pairs (K) and
number of 3D points (N). We observe that using a few stereo-pairs gives competitive
and better results than using all the pairs. We posit that noise introduced by using
more stereo pairs might be responsible for the lower performance. Finally, we study
the benefit of using an MLP for composing per-pixel color and depth information. The
MLP allows us to obtain better results than a naive composition (Fig. 4). We refer the
reader to Figure 6 for visual comparisons. We observe that details become better for
NeRF when trained for long. However, our approach captures more details in a few
minutes as compared to 32 hours of training of a NeRF model. Consistent with the
observation of Zhang et al. [49], PSNR may favor averaged/blurry results while LPIPS
favors sharp results.
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2 hours 4 hours 8 hours 32 hours Ours (10 minutes)

2 hours 4 hours 8 hours 32 hours Ours (10 minutes)

Fig. 6. Improvement in NeRF over time: We show the progression (first 32
hours) of improvement for the NeRF model. We observe that results improve over
time as details become clearer over time. We contrast this with our approach that can
generate sharp results in only 10 minutes. Best viewed in electronic format.

(a) Ours (b) NeX (c) Ours | NeX

Fig. 7. Shiny Dataset: (a)We contrast the results of our approach with (b) NeX [44]
on held-out views. (c) Our approach is able to capture the details better than NeX
such as the text (0454295012 3-Y) in the top-row and the details on the plate and
stone in the bottom row. Best viewed in electronic format.
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8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

4032×3024

NeRF

vanilla 21.141 ± 3.528 0.735 ± 0.155 0.528 ± 0.157

2M iterations 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153

Naive Composition 16.624 ± 2.906 0.648 ± 0.197 0.342 ± 0.096

Naive Composition++ 17.535 ± 2.698 0.688 ± 0.184 0.317 ± 0.107

Ours (10 minutes)

K = 50, N = 50 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108

K = 100, N = 100 22.868 ± 4.588 0.802 ± 0.140 0.269 ± 0.120

K = 200, N = 200 23.016 ± 4.698 0.803 ± 0.144 0.285 ± 0.132

K = ALL,N = 200* 22.090 ± 4.263 0.786 ± 0.154 0.332 ± 0.145

Ours (50 minutes)

K = 50, N = 50 22.261 ± 4.812 0.791 ± 0.144 0.252 ± 0.105

K = 100, N = 100 22.739 ± 4.637 0.801 ± 0.142 0.258 ± 0.113

K = 200, N = 200 23.020 ± 4.690 0.805 ± 0.143 0.271 ± 0.123

K = ALL,N = 200* 21.788 ± 4.243 0.780 ± 0.154 0.317 ± 0.137

resized to original resolution

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180

NeX [44] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 3. Shiny dataset: We study our approach on the 8 real sequences from the
Shiny dataset [44]. NeRF is trained for 2M iterations taking approx 64 hours. We also
add the results of 4× bi-linearly upsampled results from NeX [44] on these sequences.
Our approach gets competitive performance in only a few minutes.

the performance of our approach (without any modification for these sequences)
trained for 10 and 50 epochs. Our approach underperform both PSNR and SSIM
but achieves a competitive LPIPS score. However, we can generate novel hi-res
views (12MP) in a few minutes with limited computational resources.

4.3 Unbounded Scenes and Varying Number of Views

We study the influence of the number of views on the quality of synthesized views.
We use challenging synthetic multi-view sequences from MVS-Synth dataset [13]
that consist of different unbounded scenes. We use the first 13 sequences with
unbounded depth from this dataset for our analysis. Each sequence consists
of 100 frames. We use 50 frames (1920 × 1080 resolution) for evaluation, and
train models by varying the number of views between {10, 20, 30, 40, 50}. The
details about train-test splits are available in Appendix A.3. The ground truth
camera parameters are provided for these sequences. For this analysis, we train
65 NeRF [27] models (each for 200, 000 iterations taking roughly 420 minutes per
model) and 65 models for our approach. Our approach takes 10−20 minutes per
sequence depending on the number of views. We contrast the performance of two
methods in Table 5. Without any modification, our approach can generate better
results. We can also generate better results with fewer views. For e.g., our method
can get better results with 10 views than NeRF with 50 views on these sequences.
Figure 8 and Figure 9 shows the comparison of our approach with NeRF when
using 10 and 50 views respectively. We show the improvement in performance
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8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

4032×3024

NeRF

vanilla 25.192 ± 3.681 0.881 ± 0.063 0.396 ± 0.084

2M iterations 25.666 ± 3.833 0.887 ± 0.062 0.372 ± 0.080

Naive Composition 17.147 ± 2.878 0.687 ± 0.134 0.528 ± 0.116

Naive Composition++ 18.280 ± 2.852 0.732 ± 0.124 0.475 ± 0.118

Ours (10 minutes)

K = 50, N = 50 22.561 ± 3.361 0.848 ± 0.078 0.347 ± 0.085

K = 100, N = 100 22.951 ± 3.564 0.854 ± 0.077 0.361 ± 0.087

K = 200, N = 200 22.930 ± 3.612 0.854 ± 0.078 0.380 ± 0.096

K = ALL,N = 200* 21.650 ± 2.605 0.841 ± 0.072 0.416 ± 0.079

Ours (50 minutes)

K = 50, N = 50 22.335 ± 3.316 0.839 ± 0.086 0.355 ± 0.099

K = 100, N = 100 23.020 ± 3.500 0.851 ± 0.079 0.356 ± 0.093

K = 200, N = 200 23.237 ± 3.673 0.853 ± 0.082 0.369 ± 0.105

K = ALL,N = 200* 21.650 ± 2.605 0.841 ± 0.072 0.400 ± 0.090

resized to original resolution

SRN [39] 21.147 ± 3.140 0.821 ± 0.078 0.594 ± 0.113

LLFF [26] 23.334 ± 3.315 0.863 ± 0.064 0.431 ± 0.091

NeRF 25.076 ± 3.432 0.871 ± 0.062 0.439 ± 0.103

NeX 25.430 ± 3.503 0.881 ± 0.058 0.387 ± 0.077

Table 4. Real forward-facing dataset: We study our approach on the original
resolution of the 8 real sequences from Mildenhall et al. [26]. We also add the results
of 4× bi-linearly upsampled results from NeX [44] on these sequences. Our approach
underperform PSNR and SSIM but competitive LPIPS score.

(a) NeRF (c) GT(b) Ours

Fig. 8. Synthetic scenes with unbounded depth, Num Views = 10 : (a) We
show held-out views synthesized using NeRF models trained for synthetic scenes with
unbounded depth. In the this experiment, the number of views at training time is 10.
(b) We then show results using our approach. Our approach synthesizes detailed novel
views despite lower number of views available for training. (c) The ground truth is
shown for reference.
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when using more views in Figure 11. Consistent with the quantitative analysis
(Table 5), we see better results visually when increasing the number of views.
Estimating camera parameters via SfM: We repeat the above experiment
with different camera parameters. We estimate camera parameters (intrinsics
and extrinsics) from multi-views using Agisoft Metashape (a professional soft-
ware used widely in industry). Table 6 shows the performance of two approaches.
We observe similar trends. The performance of NeRF improved drastically with
camera parameters estimated using SfM. However, it still underperforms in com-
parison to our method by a large margin. We show the best performing result
of NeRF on a held-out view from one of these sequences in Figure 10. We ob-
serve that our approach captures details better than NeRF. Note, we also tried
COLMAP to obtain camera poses and point clouds. However, COLMAP strug-
gles on some of these sequences.

(a) NeRF (c) GT(b) Ours

Fig. 9. Synthetic scenes with unbounded depth, Num Views = 50: (a) We
show held-out views synthesized using NeRF models trained for synthetic scenes with
unbounded depth. In this experiment, the number of views at training time is 50.
(b) We then show results using our approach. While NeRF struggles for scenes with
unbounded depth, our approach is able to synthesize high-quality and detailed novel
views. (c) The ground truth is shown for reference.

4.4 Hi-Res Studio Capture

Multi-View Facial Capture: We employ multi-view hi-res facial captures. We
can synthesize hi-resolution novel views with a few minutes of training without
any modification and without using any expert knowledge such as facial details,
foreground-background etc. Figure 12 shows novel views synthesized and facial
details (such as hair, eyes, wrinkles, teeth, etc.) captured using a model trained
for a specific subject.
Multi-View Full Body Capture: Our approach also enables us to synthesize
full-bodies from hi-res multi-view captures. Once again, we did not use any
human-body specific information. Figure 14 shows novel views synthesized and
body details captured using a model trained for a specific subject.
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13 sequences PSNR↑ SSIM↑ LPIPS ↓

num-views=10

NeRF 14.534 ± 2.001 0.499 ± 0.102 0.712 ± 0.096

Ours 19.439 ± 4.375 0.697 ± 0.128 0.410 ± 0.177

num-views=20

NeRF 15.585 ± 2.086 0.524 ± 0.099 0.707 ± 0.096

Ours. 23.651 ± 4.045 0.813 ± 0.096 0.241 ± 0.120

num-views=30

NeRF 16.113 ± 2.091 0.536 ± 0.096 0.710 ± 0.094

Ours 25.357 ± 3.709 0.846 ± 0.081 0.201 ± 0.094

num-views=40

NeRF 16.561 ± 2.039 0.548 ± 0.094 0.708 ± 0.093

Ours. 26.083 ± 3.691 0.865 ± 0.072 0.178 ± 0.077

num-views=50

NeRF 16.771 ± 1.955 0.553 ± 0.093 0.712 ± 0.090

Ours 26.829 ± 3.621 0.878 ± 0.064 0.161 ± 0.070

Table 5. Synthetic Multi-View Sequences of Unbounded Scenes: We vary
the number of views to synthesize target views using synthetic multi-view data. The
held-out sequences are fixed in these analysis. We observe that our approach is able to
generate better results with fewer views. The performance for both approaches improves
as we increase the number of views. However, our method gets a substantial boost in
performance as we increase the number of views.

13 sequences PSNR↑ SSIM↑ LPIPS ↓

num-views=10

NeRF 16.150 ± 4.195 0.541 ± 0.139 0.619 ± 0.158

Ours 18.460 ± 4.099 0.656 ± 0.129 0.451 ± 0.167

num-views=20

NeRF 18.171 ± 4.543 0.582 ± 0.135 0.594 ± 0.171

Ours. 22.414 ± 4.197 0.766 ± 0.126 0.289 ± 0.147

num-views=30

NeRF 19.725 ± 4.759 0.619 ± 0.135 0.557 ± 0.179

Ours 24.191 ± 4.219 0.803 ± 0.122 0.243 ± 0.137

num-views=40

NeRF 20.074 ± 4.673 0.627 ± 0.132 0.556 ± 0.178

Ours. 24.832 ± 4.110 0.822 ± 0.117 0.218 ± 0.125

num-views=50

NeRF 20.244 ± 4.611 0.631 ± 0.129 0.556 ± 0.178

Ours 25.529 ± 4.212 0.836 ± 0.112 0.198 ± 0.116

Table 6. Camera Parameters Estimated using SfM for Synthetic Multi-View
Sequences: We repeat the experiment in Table 5 with camera parameters estimated
using Agisoft Metashape given multi-views from a sequence. Once again, we observe
similar trends. Interestingly, NeRF improves upon previous results. However, it still
underperforms as compared to our method by a large margin.
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(a) NeRF (c) GT(b) Ours

(a) NeRF (c) GT(b) Ours

(a) NeRF (c) GT(b) Ours

Fig. 10. Best performing NeRF output on a synthetic sequence, Num Views
= 50: (a) We cherry-pick the best performing synthesized result on a held-out view
synthesized using NeRF trained on a sequence with unbounded depth. (b) We then
show results using our approach. We zoom in to the billboard in the center of image
(top-example), towards the bottom-left in second example, and on the truck in the
middle in bottom-example. Our approach captures details better than NeRF. (c) The
ground truth is shown for reference.
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Fig. 11. Varying number of views: We vary the number of views for training our
model. We show three examples here: (1) left column shows drastic performance im-
provement as we increase the number of views; (2) middle column shows improvement
when increasing from 10 to 30 and then saturating; and (3) right column where the
improvement is little as we increase the number of views. In general, we observe that
performance improves as we increase the number of views.

Ability to Generalize: An important aspect of our approach is to enable
generalization to unseen time instants and unknown subjects. We train a model
for one time instant of one subject and can use it to synthesize new views for
unknown time instants. We show extreme facial expressions and unseen subjects
in Figure 13. We also contrast the results of generalization with a subject-specific
model in Figure 15. We observe that the learned model generalizes well except for
the clothing in the bottom part of the images. We posit that there isn’t sufficient
coverage from multi-views in that area. However, an exemplar model learned for
a specific subject is able to capture the details. We leave the reader with an open
philosophical question as to whether we should think about generalization if we
can learn an exemplar model for a given data distribution in a few seconds?
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Fig. 12. Hi-Res Facial Details: Our approach allows us to capture hi-res facial
details. We show novel views synthesized for various subjects and emphasize different
regions on the face to show details such as hair, eyes, teeth, and skin details.

Fig. 13. Generalization to unseen time instants and unseen subjects: The
model is trained on a single time instant – shown on top-left. Our model generalizes to
unseen expressions (top-right) and unseen subjects (bottom row).



Neural Pixel Composition (NPC) 21

Fig. 14. Hi-Res Body Synthesis: Our approach allows us to synthesize high quality
novel views of human bodies. In the bottom-row, we zoom to see the details captured
on the face for each of three subjects. Best viewed in electronic format.

Exemplar Generalization GeneralizationExemplar

Fig. 15. Contrasting Exemplar Models and Generalization: We contrast the
results from exemplar model with the results obtained using a model that has never
seen these subjects. We term it Generalization here.
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4.5 Convergence Analysis

We study the convergence properties of our approach using 12 LLFF sequences [26]
(Appendix A.2) and Shiny Dataset [44]. We show the plots in Figure 16 for model
training in the first 10 epochs, i.e. from 60 seconds to 600 seconds. We observe
that our model gets close to convergence in the first few seconds. Crucially,
our approach obtains competitive results to prior work on the Shiny dataset
within 60 seconds of training as compared to 64 hours for NeRF [27] on full-
resolution and 24 − 30 hours of training of NeX [44] on one-fourth resolution.
We also study convergence using 24 sparse and unconstrained multi-view se-
quences (Appendix A.1). Training an epoch on these sequences roughly take 10
seconds because these are sparse. We observe that model gets close to the best
performance in the first 10 seconds of training. The raw values for the plots are
available in Appendix A.4.

(a)  LLFF (12 sequences)
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(b)  Shiny (8 sequences)
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(c)  Sparse and Unconstrained Multi-Views (24 sequences)
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Fig. 16. Convergence Analysis: We study the convergence properties of our ap-
proach using 12 LLFF sequences [26] and 8 sequences from Shiny Dataset [44]. We
also study convergence using 24 sparse and unconstrained multi-view sequences. We
observe that our model gets close to convergence in the first few seconds. Note the
difference in values on y-axis is small.
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3D space

tim
e

1.  freeze the time

2.  freeze the view

3.  vary both 
view and time

Fig. 17. 4D view synthesis: We demonstrate our approach for 4D view synthesis on
the challenging Open4D dataset [3]. Without any background-foreground modeling or
any modification, our approach learns to perform 4D visualization of dynamic events.
(1). We can freeze the time/event and move the view. (2). We can freeze the view and
see the event happening. (3). We can vary both view and time.

Ground TruthNeural Composition Naive Composition

Fig. 18. Naive Composition vs. Neural Composition for 4D View Synthesis:
We contrast the performance of naive composition using depth ordering with neural
pixel composition for unseen temporal sequences. We observe that neural composition
allows us to generate more realistic views in contrast to the naive composition.
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Ground TruthOursOpen4D

Ground TruthOursOpen4D

Fig. 19. Unseen Temporal Sequences: We contrast Open4D with ours for unseen
temporal sequences. We observe that our approach allows us to capture details (such
as details on human faces) consistently better than Open4D.

5 4D Multi-View View Synthesis

We study the ability of our approach to perform 4D view synthesis. We train
our model on the temporal sequences (1920×1080 resolution) from the Open4D
dataset and contrast our approach with their method [3]. Figure 17 shows dif-
ferent things that we can do using our approach without any modification.

Open4D computes foreground and background images, and trains a modified
U-Net model [34] for composition. The foreground image is computed by a naive
composition of pixels from multi-views using depth ordering (as shown on the
left side in Fig 18). The background image is computed by averaging foreground
images for various time instances. We conduct two experiments: (1) held-out
temporal sequences; and (2) held-out camera views.
Held-out temporal sequences: In the first experiment, we study the perfor-
mance of the trained model on unseen temporal sequences. We train the model
without temporal constraint. Our goal is to study the compositional ability of
our model in contrast to the more explicit Open4D. The model is trained with
multi-views available for 300− 400 time instances and evaluated on unseen 100
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Ground TruthOursOpen4D

Ground TruthOursOpen4D

Ground TruthOursOpen4D

Fig. 20. Held-Out Camera Views: We contrast Open4D with ours for held-out
camera views. Once again, we observe that our approach allows us to capture consistent
details (such as details on human faces) better than Open4D.

time instances. Table 7 contrasts the performance of our approach with Open4D.
Quantitatively, we observe similar performance of our approach as compared to
Open4D on unseen temporal sequences. We observe better qualitative results
as shown in Figure 19. Our approach is able to capture details such as human
faces consistently better than Open4D. Crucially, our approach does not require
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explicit foreground-background modeling and can work with arbitrary temporal
sequences. The details of the sequences are in Sec B.1.

5 sequences PSNR↑ SSIM↑ LPIPS ↓

Naive Composition 13.723 ± 2.759 0.342 ± 0.110 0.665 ± 0.113

Open4D [3] 20.355 ± 4.425 0.626 ± 0.131 0.306 ± 0.079

Ours 21.458 ± 4.690 0.645 ± 0.145 0.431 ± 0.139

Table 7. Unseen Temporal Sequences: We study the compositional ability of our
model in contrast to the more explicit Open4D. The model is trained with multi-views
available for 300 − 400 time instances and evaluated on unseen 100 time instances.
There are a total of 5297 frames used for evaluation. Our approach is able to generate
results competitive to Open4D without any modification.

Held-out camera views: In the second experiment, we study the performance
on unseen camera views but a known temporal sequence. We train the model
for 500 time instances with and without temporal constraint to understand its
importance. Table 8 contrasts the performance of our approach with Open4D.
Without any heuristics and foreground-background estimation, we are able to
learn a representation that allows 4D view synthesis. Our approach use a simple
reconstruction loss whereas Open4D use an additional adversarial loss [9]. Using
the adversarial loss enables Open4D to generate overall sharp results that leads
to lower LPIPS score. We contrast our approach with Open4D in Figure 20. Once
again, we observe that our approach is able to capture details (facial and body
details) better than Open4D. Finally, incorporating temporal constraint as the
input to the model further improves performance. The details of the sequences
are in Sec B.2.

5 sequences PSNR↑ SSIM↑ LPIPS ↓

Naive Composition 14.584 ± 3.364 0.374 ± 0.089 0.617 ± 0.064

Open4D [3] 16.681 ± 2.718 0.498 ± 0.071 0.477 ± 0.061

Ours (w/o T) 16.665 ± 2.365 0.519 ± 0.074 0.538 ± 0.071

Ours (w/ T) 16.797 ± 2.523 0.535 ± 0.080 0.522 ± 0.075

Table 8. Held-Out Camera Views: We contrast the performance of our approach
with Open4D [3] to synthesize held-out camera views. There are a total of 2092 frames
used for evaluation. Quantitatively, we achieve similar performance. Importantly, our
approach does not require heuristics to compute a foreground and background image.
Finally, we further improve performance by incorporating temporal information as an
input to the model.
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6 3D reconstruction and Depth from Multi-Views

We use the learned MLPs to construct depth map for a given view. Given an
array of depth values for a pixel, we select the depth value corresponding to
the maximum αi value. Figure 21 shows the depth map for images from various
sequences. We do not have ground truth depth values for these sequences.

Fig. 21. Depth maps using learned MLPs: We show depth map for images for
various sequences. We use the learned MLPs to select the depth value corresponding
to the max αi value from an array of depth values for a pixel. The “jet blue” color
corresponds to missing depth values for these images (e.g., the bottom right edge on
the depth map of the first image).

Multiple stereo pairs also provide us with dense 3D point clouds. However,
correspondences can still be noisy, and using them with noisy camera parameters
leads to poor 3D estimates. We observe that the learned MLP enables us to select
good 3D points per view that can be accumulated across multi-views to obtain
a dense 3D reconstruction. For each pixel, we take the top-3 αi values and check
if the corresponding di values are in the vicinity of each other (this is done by
empirically selecting a distance threshold). If they are, then we select the 3D
point from a stereo pair corresponding to the maximum αi value. The process
is repeated for all the pixels in the available multi-views. We show the results of
3D reconstruction using our approach in Fig 22 for sparse multi-view sequences.
COLMAP [35,36] struggle to achieve dense 3D reconstruction on these sequences.

7 Discussion

We propose a novel approach for continuous 3D-4D view synthesis from sparse
and wide-baseline multi-view observations. Leveraging a rich pixel representation
that consists of color, depth, and uncertainty information leads to a high per-
forming view-synthesis approach that generalizes well to novel views and unseen
time instances. Our approach can be trained within few minutes from scratch
utilizing as few as 1GB of GPU memory. In this work, we strive to provide an
extensive analysis of our approach in contrast to existing methods on a wide
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(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(d) 12 views capturing more than thirty people

Fig. 22. Dense 3D reconstruction from sparse views: We show dense 3D point
clouds computed using our approach for a specific time instant for four unconstrained
multi-view sequences [3]. A user can easily explore the region by navigating the point
clouds. We show random views of the point clouds.

variety of settings. Importantly, our method works well on numerous settings
without incorporating any task-specific or sequence-specific knowledge. We see
our approach as a first step towards more efficient and general neural rendering
techniques via the explicit use of geometric information and hope that it will
inspire follow-up work in this exciting field.

Note to reader: We suggest the reader to see our project page and attached
videos for more results and analysis.
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Zollhöfer, M.: State of the Art on Neural Rendering. Computer Graphics Forum
(EG STAR 2020) (2020) 2, 4

42. Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Wang, Y., Lass-
ner, C., Sitzmann, V., Martin-Brualla, R., Lombardi, S., Simon, T., Theobalt, C.,
Niessner, M., Barron, J.T., Wetzstein, G., Zollhoefer, M., Golyanik, V.: Advances
in neural rendering (2021) 4



Neural Pixel Composition (NPC) 31

43. Wang, Q., Wang, Z., Genova, K., Srinivasan, P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: CVPR (2021) 2, 4

44. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: Real-
time view synthesis with neural basis expansion. In: CVPR (2021) 11, 13, 14, 15,
22, 33, 34, 37, 38

45. Wu, L., Lee, J.Y., Bhattad, A., Wang, Y., Forsyth, D.: Diver: Real-time and ac-
curate neural radiance fields with deterministic integration for volume rendering.
In: CVPR (2022) 4

46. Yang, G., Manela, J., Happold, M., Ramanan, D.: Hierarchical deep stereo match-
ing on high-resolution images. In: CVPR (2019) 3, 4, 7, 10

47. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: Pixelnerf: Neural radiance fields from
one or few images. In: CVPR (2021) 2, 4

48. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492 (2020) 2, 4

49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018) 9, 10, 12

50. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learn-
ing view synthesis using multiplane images. ACM Trans. Graph. (2018) 4



32 Bansal and Zollhoefer

A 3D View Synthesis

A.1 Sparse and Unconstrained Multi-Views

We use 24 time instants from multi-view temporal sequences from the Open4D
dataset [3]. The dynamic scenes are captured by a varying number of cameras
in these sequences. The number of views vary from 7 to 11. We use one held-out
view (or camera) for evaluation. Following is the setup for this analysis:

Sequences
WFD-01: 6 time-stamps - {2000, 2500, 3000, 3500, 4000, 4500}. Test CAM-ID:
{2, 9, 2, 2, 6, 4}.
WFD-02: 5 time-stamps - {1900, 3000, 3500, 4000, 4500}. Test CAM-ID: {3, 6,

4, 2, 3}.
JiuJitsu: 7 time-stamps - {3000, 3500, 4000, 4500, 5000, 5500, 6000}. Test
CAM-ID: {5, 4, 9, 5, 7, 11, 1}.
Gangnam: 3 time-stamps - {0200, 0300, 0900}. Test CAM-ID: {4, 4, 4}.
Jumping: 3 time-stamps - {0200, 0300, 0400}. Test CAM-ID: {0, 0, 0}.

A.2 Hi-Resolution View Synthesis

We use the following 12 sequences from LLFF dataset [26] for this analysis:

Sequences: airplants, data2 apeskeleton, data2 benchflower,
data2 bridgecar, data2 chesstable, data2 colorfountain,
data2 colorspout, data2 redtoyota, data3 ninjabike,
data4 colinepiano, data5 piano, pond.
Test IDs: For each sequence, we held-out every 8th frame for evaluation.

A.3 Unbounded Views and Varying Number of Views

We use the following 13 synthetic multi-view sequences for this analysis from
the MVS-Synth dataset [13]:

Sequence IDs: {0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007, 0008, 0009,
0010, 0011, 0012}.
For each sequence, we held-out every other frame for evaluation:
Test IDs: {000:002:098}.
Train IDs:
10 views: {003, 013, 023, 033, 043, 053, 063, 073, 083, 093}.
20 views: {003, 009, 013, 019, 023, 029, 033, 039, 043, 049, 053, 059, 063, 069,
073, 079, 083, 089, 093, 099}.
30 views: {003, 007, 009, 013, 017, 019, 023, 027, 029, 033, 037, 039, 043, 047,
049, 053, 057, 059, 063, 067, 069, 073, 077, 079, 083, 087, 089, 093, 097, 099}.
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40 views: {001, 003, 007, 009, 011, 013, 017, 019, 021, 023, 027, 029, 031, 033,
037, 039, 041, 043, 047, 049, 051, 053, 057, 059, 061, 063, 067, 069, 071, 073,
077, 079, 081, 083, 087, 089, 091, 093, 097, 099}.
50 views: {001:002:099}.

A.4 Convergence Analysis

In this section, we provide the raw data used in Sec 4.5. We use 24 sparse
and unconstrained multi-view sequences (Sec A.1) from Open4D [3]. Training
an epoch on these sequences roughly take 10 seconds because these are sparse.
Table 9 shows the performance of our model for 10 epochs (from 10 seconds to
roughly 2 minutes). We also use two hi-res (12 MP) datasets for these analysis:
(1) 12 sequences (Sec A.2) from LLFF dataset [26]; and (2) 8 sequences from
Shiny dataset [44]. We compute the performance of the models for the first 10
epochs, i.e., from 60 to 600 seconds of training. We follow the three settings
(as in Sec 4.2) where we vary the number of stereo-pairs (K) and number of
3D points (N): (1) (K = 50, N = 50); (2) (K = 100, N = 100); and (3)
(K = 200, N = 200). Table 10, Table 11, and Table 12 shows the performance for
12 sequences from LLFF. Table 13, Table 14, and Table 15 shows the performance
for 8 sequences from the Shiny dataset. We observe that our approach gets close
to convergence within the first 60 seconds of training in all the settings.

B 4D View Synthesis

We use temporal sequences from Open4D dataset [3] for these analysis.

B.1 Unseeen Temporal Sequences

We use all the available views of the following 5 publicly available temporal
sequences.

Sequences
WFD-01: Training - {0011:0411}. Testing - {0412:0511}.
WFD-02: Training - {0400:0800}. Testing - {0801:0900}.
JiuJitsu: Training - {0001:0400}. Testing - {0401:0500}.
Gangnam: Training - {0100:0400}. Testing - {0401:0500}.
Birds: Training - {0309:0709}. Testing - {0710:0809}.

B.2 Held-out Camera Views

We held-out one camera view from the following 5 publicly available temporal
sequences.

Sequences
WFD-01: time - {0011:0511}. Test CAM-ID: {4}.
WFD-02: time - {0400:0900}. Test CAM-ID: {4}.
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24 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Epochs

1 18.181 ± 1.519 0.559 ± 0.079 0.533 ± 0.066

2 18.139 ± 1.378 0.562 ± 0.077 0.528 ± 0.062

3 18.016 ± 1.461 0.562 ± 0.077 0.527 ± 0.063

4 18.026 ± 1.420 0.563 ± 0.076 0.527 ± 0.063

5 18.115 ± 1.459 0.566 ± 0.076 0.523 ± 0.061

6 17.877 ± 1.409 0.561 ± 0.075 0.532 ± 0.061

7 17.951 ± 1.456 0.562 ± 0.076 0.531 ± 0.059

8 17.918 ± 1.511 0.562 ± 0.077 0.532 ± 0.061

9 17.951 ± 1.475 0.562 ± 0.076 0.531 ± 0.058

10 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

NeRF [27] 13.693 ± 2.050 0.317 ± 0.094 0.713 ± 0.089

DS-NeRF [6] 14.531 ± 2.603 0.316 ± 0.099 0.757 ± 0.040

LLFF [26] 15.187 ± 2.166 0.384 ± 0.082 0.602 ± 0.090

Table 9. Sparse and Unconstrained Multi-Views : We follow the evaluation
criterion in Table 1. We observe that our model gets the best performance in the
the first 10 seconds of training. We contrast the performance of NeRF and DS-NeRF
which takes 420 minutes of training on a single NVIDIA V100 GPU. We also show the
performance of LLFF which is an off-the-shelf method and does not require training.

JiuJitsu: time - {0001:0500}. Test CAM-ID: {0}.
Gangnam: time - {0100:0500}. Test CAM-ID: {4}.
Birds: time - {0309:0809}. Test CAM-ID: {7}.

C More Analysis

We run more analysis on our model for various settings and study their impact
on performance of our approach. In these experiments, we train the model for
10 epochs using LLFF-12 sequences (Sec A.2) and Shiny Dataset [44], and we
use K = 50 stereo-pairs and N = 50 3D points. We also use 24 sparse and
unconstrained sequences from Open4D (Sec A.1).

Number of Filters: We vary the number of filters in our MLP model, nf =
{16, 32.64, 128, 256, 512}. Our default setting is nf = 256. Table 17 shows the
performance for Open4D-24 sequences, LLFF-12 sequences and Shiny dataset.
The performance improves as we increase the number of filters. The use of nf =
256 is a good balance between performance and size of model. We also observe
that we can make extremely compact model at the loss of slight performance.
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12 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Epochs

1 20.519 ± 2.805 0.589 ± 0.137 0.445 ± 0.076

2 20.638 ± 2.736 0.592 ± 0.137 0.437 ± 0.076

3 20.744 ± 2.772 0.593 ± 0.137 0.435 ± 0.076

4 20.791 ± 2.783 0.593 ± 0.137 0.433 ± 0.075

5 20.761 ± 2.774 0.593 ± 0.137 0.433 ± 0.076

6 20.798 ± 2.787 0.594 ± 0.136 0.429 ± 0.076

7 20.829 ± 2.807 0.594 ± 0.136 0.428 ± 0.074

8 20.832 ± 2.803 0.594 ± 0.136 0.427 ± 0.075

9 20.841 ± 2.802 0.595 ± 0.136 0.425 ± 0.074

10 20.839 ± 2.798 0.594 ± 0.136 0.426 ± 0.075

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 10. LLFF-12 sequences and (K = 50, N = 50): We use 50 stereo-pairs and
50 3D points. We follow the evaluation criterion in Table 2. We observe that our model
gets close to the best performing model in the the first 60 seconds of training. For
reference, we also show the performance of NeRF which takes 64 hours of training on
a single NVIDIA V100 GPU.

12 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Epochs

1 20.491 ± 2.966 0.590 ± 0.140 0.494 ± 0.079

2 20.742 ± 2.779 0.594 ± 0.138 0.479 ± 0.079

3 20.708 ± 2.851 0.593 ± 0.139 0.479 ± 0.080

4 20.765 ± 2.829 0.595 ± 0.138 0.473 ± 0.078

5 20.849 ± 2.783 0.595 ± 0.137 0.472 ± 0.079

6 20.878 ± 2.787 0.596 ± 0.137 0.467 ± 0.079

7 20.878 ± 2.807 0.596 ± 0.137 0.466 ± 0.078

8 20.914 ± 2.806 0.597 ± 0.137 0.464 ± 0.078

9 20.938 ± 2.801 0.597 ± 0.136 0.462 ± 0.079

10 20.958 ± 2.805 0.597 ± 0.136 0.461 ± 0.080

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 11. LLFF-12 sequences and (K = 100, N = 100): We use 100 stereo-pairs
and 100 3D points. We follow the evaluation criterion in Table 2. We observe that our
model gets close to the best performing model in the the first 60 seconds of training. For
reference, we also show performance of a NeRF model that takes 64 hours of training
on a single NVIDIA V100 GPU.
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12 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Epochs

1 20.240 ± 2.955 0.586 ± 0.141 0.531 ± 0.083

2 20.433 ± 2.859 0.587 ± 0.139 0.523 ± 0.082

3 20.474 ± 2.842 0.586 ± 0.138 0.518 ± 0.083

4 20.519 ± 2.808 0.590 ± 0.137 0.507 ± 0.082

5 20.538 ± 2.816 0.590 ± 0.137 0.506 ± 0.081

6 20.633 ± 2.795 0.591 ± 0.136 0.504 ± 0.081

7 20.630 ± 2.825 0.590 ± 0.136 0.501 ± 0.082

8 20.679 ± 2.841 0.591 ± 0.136 0.499 ± 0.081

9 20.783 ± 2.777 0.592 ± 0.136 0.496 ± 0.081

10 20.799 ± 2.772 0.592 ± 0.136 0.493 ± 0.081

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 12. LLFF-12 sequences and (K = 200, N = 200): We use 200 stereo-pairs
and 200 3D points. We follow the evaluation criterion in Table 2. We observe that our
model gets close to the best performing model in the the first 60 seconds of training. For
reference, we also show performance of a NeRF model that takes 64 hours of training
on a single NVIDIA V100 GPU.

Number of Layers: We vary the number of layers in our MLP model, nl =
{1, 2, 3, 4, 5, 6}. Our default setting is nl = 5. Table 18 shows the performance
for Open4D-24 sequences, LLFF-12 sequences and Shiny dataset respectively.
Influence of Gamma: We use γ as a correction term that helps us to obtain
sharp outputs. Table 16 (first row)) shows the performance for Open4D-24 se-
quences, LLFF-12 sequences and Shiny dataset. We observe that the additional
γ term helps in inpainting the missing information.
Influence of Spatial Information: The second row in Table 16 shows the
performance of our approach without using spatial information as an input to
MLP. We observe that using spatial information enables us to provide smooth
outputs and better inpaints missing information.
Influence of Uncertainty/Entropy: The third row in Table 16 shows the per-
formance of our approach without using the uncertainty of the depth estimates
(H). Using uncertainty provides slightly better performance.
Direct MLP: Finally, we observe the benefits of using depth explicitly in com-
puting α to do a proper color composition. The fourth row in Table 16 shows the
performance for Open4D-24 sequences, LLFF-12 sequences and Shiny dataset.
We observe that using depth explicitly allows to do better view synthesis.
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8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

Num-Epochs

1 22.184 ± 4.211 0.793 ± 0.142 0.268 ± 0.110

2 22.270 ± 4.321 0.795 ± 0.142 0.263 ± 0.108

3 22.316 ± 4.372 0.795 ± 0.141 0.261 ± 0.107

4 22.348 ± 4.379 0.796 ± 0.141 0.260 ± 0.107

5 22.234 ± 4.399 0.795 ± 0.141 0.259 ± 0.107

6 22.395 ± 4.542 0.795 ± 0.141 0.258 ± 0.107

7 22.375 ± 4.579 0.795 ± 0.142 0.258 ± 0.017

8 22.386 ± 4.625 0.795 ± 0.142 0.257 ± 0.107

9 22.430 ± 4.677 0.795 ± 0.142 0.257 ± 0.107

10 22.430 ± 4.740 0.795 ± 0.142 0.256 ± 0.107

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180

NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153

NeX [44] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 13. Shiny dataset and (K = 50, N = 50): We use 50 stereo-pairs and 50 3D
points. We follow the evaluation criterion in Table 3. We observe that our model gets
close to the best performing model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show the performance of NeX
models take 24-30 hours of training for one-fourth resolution.

8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

Num-Epochs

1 22.519 ± 4.197 0.799 ± 0.142 0.287 ± 0.126

2 22.647 ± 4.264 0.801 ± 0.140 0.281 ± 0.123

3 22.665 ± 4.305 0.801 ± 0.140 0.279 ± 0.123

4 22.718 ± 4.347 0.801 ± 0.140 0.278 ± 0.123

5 22.745 ± 4.369 0.801 ± 0.141 0.277 ± 0.123

6 22.756 ± 4.437 0.801 ± 0.141 0.275 ± 0.123

7 22.812 ± 4.499 0.802 ± 0.141 0.273 ± 0.123

8 22.754 ± 4.401 0.802 ± 0.141 0.272 ± 0.123

9 22.843 ± 4.455 0.802 ± 0.141 0.270 ± 0.123

10 22.868 ± 4.588 0.802 ± 0.141 0.269 ± 0.123

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180

NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153

NeX [44] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 14. Shiny dataset and (K = 100, N = 100): We use 100 stereo-pairs and 100
3D points. We follow the evaluation criterion in Table 3. We observe that our model
gets close to the best performing model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show the performance of NeX
models take 24-30 hours of training for one-fourth resolution.
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8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

Num-Epochs

1 22.563 ± 4.269 0.799 ± 0.147 0.311 ± 0.141

2 22.734 ± 4.385 0.800 ± 0.146 0.303 ± 0.138

3 22.788 ± 4.413 0.801 ± 0.145 0.301 ± 0.137

4 22.838 ± 4.428 0.802 ± 0.145 0.298 ± 0.137

5 22.847 ± 4.467 0.802 ± 0.145 0.294 ± 0.135

6 22.878 ± 4.478 0.802 ± 0.145 0.293 ± 0.135

7 22.916 ± 4.543 0.802 ± 0.145 0.291 ± 0.134

8 22.934 ± 4.571 0.802 ± 0.145 0.289 ± 0.133

9 22.947 ± 4.603 0.803 ± 0.144 0.287 ± 0.133

10 23.016 ± 4.698 0.803 ± 0.144 0.285 ± 0.132

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180

NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153

NeX [44] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 15. Shiny dataset and (K = 200, N = 200): We use 200 stereo-pairs and 200
3D points. We follow the evaluation criterion in Table 3. We observe that our model
gets close to the best performing model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show the performance of NeX
models take 24-30 hours of training for one-fourth resolution.

Open4D-24 sequences PSNR↑ SSIM↑ LPIPS ↓

no gamma 17.034 ± 2.663 0.539 ± 0.099 0.539 ± 0.075

no spatial 18.387 ± 2.308 0.569 ± 0.089 0.527 ± 0.066

no entropy 17.893 ± 1.481 0.551 ± 0.074 0.573 ± 0.064

direct MLP 17.905 ± 1.808 0.562 ± 0.081 0.546 ± 0.064

full 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

LLFF-12 sequences PSNR↑ SSIM↑ LPIPS ↓

no gamma 18.831 ± 2.904 0.579 ± 0.133 0.444 ± 0.070

no spatial 20.536 ± 2.798 0.594 ± 0.135 0.429 ± 0.074

no entropy 20.792 ± 2.777 0.595 ± 0.136 0.435 ± 0.075

direct MLP 20.816 ± 2.796 0.593 ± 0.135 0.423 ± 0.076

full 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075

Shiny-8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

no gamma 17.724 ± 2.313 0.765 ± 0.138 0.288 ± 0.094

no spatial 21.047 ± 3.177 0.791 ± 0.140 0.266 ± 0.097

no entropy 22.529 ± 4.787 0.796 ± 0.142 0.258 ± 0.110

direct MLP 22.419 ± 4.757 0.794 ± 0.142 0.259 ± 0.105

full 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108

Table 16. : We study the influence of different components on our approach and see
their benefits in our approach.
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Open4D-24 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Filters

16 17.716 ± 1.485 0.555 ± 0.079 0.538 ± 0.067

32 17.775 ± 1.453 0.557 ± 0.081 0.536 ± 0.069

64 17.828 ± 1.584 0.556 ± 0.082 0.541 ± 0.068

128 17.985 ± 1.561 0.561 ± 0.079 0.535 ± 0.066

default = 256 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

512 18.091 ± 1.707 0.564 ± 0.081 0.534 ± 0.067

LLFF-12 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Filters

16 20.320 ± 2.401 0.591 ± 0.135 0.441 ± 0.07

32 20.667 ± 2.755 0.592 ± 0.136 0.433 ± 0.075

64 20.737 ± 2.818 0.594 ± 0.136 0.429 ± 0.075

128 20.771 ± 2.785 0.594 ± 0.136 0.428 ± 0.075

default = 256 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075

512 20.833 ± 2.781 0.594 ± 0.135 0.422 ± 0.075

Shiny-8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

Num-Filters

16 21.202 ± 4.283 0.787 ± 0.144 0.273 ± 0.110

32 22.058 ± 4.150 0.794 ± 0.141 0.262 ± 0.105

64 22.188 ± 4.322 0.795 ± 0.142 0.261 ± 0.106

128 20.371± 4.600 0.795 ± 0.142 0.259 ± 0.109

default = 256 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108

512 22.516 ± 4.809 0.795 ± 0.143 0.254 ± 0.108

Table 17. Number of Filters: We follow the evaluation criterion in Table 1 for
Open4D-24 sequences, Table 2 for LLFF-12 sequences and Table 3 for Shiny-8 se-
quences. The performance improves as we increase the number of filters. We use
nf = 256 as a good balance between performance and size of model.
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Open4D-24 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Layers

1 17.601 ± 1.779 0.527 ± 0.086 0.587 ± 0.101

2 18.014 ± 1.688 0.549 ± 0.081 0.555 ± 0.082

3 17.971 ± 1.621 0.555 ± 0.081 0.541 ± 0.073

4 18.066 ± 1.565 0.559 ± 0.081 0.535 ± 0.065

default = 5 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

6 17.996 ± 1.669 0.562 ± 0.079 0.534 ± 0.067

LLFF-12 sequences PSNR↑ SSIM↑ LPIPS ↓

Num-Layers

1 20.433 ± 2.972 0.573 ± 0.138 0.450 ± 0.090

2 20.707 ± 2.874 0.588 ± 0.136 0.432 ± 0.081

3 20.833 ± 2.805 0.593 ± 0.136 0.424 ± 0.076

4 20.828 ± 2.818 0.594 ± 0.136 0.424 ± 0.075

default = 5 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075

6 20.820 ± 2.775 0.594 ± 0.136 0.426 ± 0.075

Shiny-8 sequences PSNR↑ MCSSIM↑ LPIPS ↓

Num-Layers

1 22.334 ± 4.485 0.793 ± 0.142 0.256 ± 0.108

2 22.447 ± 4.659 0.794 ± 0.143 0.254 ± 0.108

3 22.412 ± 4.688 0.795 ± 0.143 0.254 ± 0.108

4 20.391± 4.730 0.794 ± 0.142 0.255 ± 0.108

default = 5 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108

6 22.367 ± 4.657 0.795 ± 0.143 0.256 ± 0.108

Table 18. Number of Layers: We follow the evaluation criterion in Table 1 for
Open4D-24 sequences, Table 2 for LLFF-12 sequences and Table 3 for Shiny-8 se-
quences. We use nl = 5 in this work.
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